
AI学习笔记
文章平均质量分 89
高桐@BILL
校园到职场,做过室内设计;WEB前后端,APP,嵌入式,LinuxAndroid,ChromiumOS,YunOS,智舱OS等开发。
行业遍及互联网,手机,IOT,汽车。
合作品牌如华为,中兴,OV,小米,三星,谷歌,联想,诺基亚,魅族,上汽,大众,腾讯,百度,网易,LG、HTC,沃达丰,AT&T,中移动,中国电信。
职业规划为操作系统方向,涉及不同框架、方案架构设计开发,可维可测,全维度的工程化;
目前主要涉及Android产品从App、FWK、HAL、Kernel、QNX全链路的垂直工程化,以及跨域产/研/测/项目/互联网产品的横向工程化;
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
1.9 提示词安全
摘要:文章介绍了"奶奶漏洞"这一针对ChatGPT的提示词攻击手段,通过情感操纵(如让AI扮演奶奶念Windows序列号)突破AI安全限制。分析了四种提示词攻击类型:角色扮演、分步诱导、情感操纵和编码混淆,以及三种防御措施:注入防御、输出防御和有害提示识别模型。文章揭示了大型语言模型面临的安全风险,以及如何通过技术手段防范恶意提示词攻击,为AI安全防护提供了实用参考。(149字)原创 2025-07-06 22:19:30 · 596 阅读 · 0 评论 -
1.8 提示词优化
我们在使用大模型的时候,同一任务使用不同表述的提示词,可能得到差异巨大的结果,因为模型的性能高度依赖输入提示词的质量。我们可以通过提示词优化来更高效地获取理想输出。原创 2025-07-06 21:39:17 · 684 阅读 · 0 评论 -
1.7 提示词工程(三)
本文探讨了如何通过使用外部工具和系统化测试来优化模型性能。首先,介绍了利用基于嵌入的搜索技术实现高效知识检索的方法,通过将相关信息动态添加到模型输入中,提升回应的准确性和时效性。其次,讨论了通过代码执行进行精确计算或调用外部API,以解决语言模型在复杂计算中的局限性。此外,还介绍了如何使模型能够访问特定功能,通过生成符合描述的函数参数并执行函数调用。在系统化测试方面,强调了设计全方位评估程序的重要性,以确保更改对总体性能产生积极影响,并提出了以标准答案为基准评估模型输出的方法。原创 2025-05-20 11:21:42 · 985 阅读 · 0 评论 -
1.6 提示词工程(二)
就像学生在考试中借助笔记能够帮助其取得更好的成绩一样,为这类模型提供参考文本也可减少其制造虚假信息的情况。如果输入信息中已经包含了相关知识,就可以直接要求模型在回答问题时引用所提供的文件中的段落。值得注意的是,输出中的引用可以通过在所提供的文件中匹配字符串来进行验证。由于所有模型都受到上下文窗口大小的限制,我们需要一种方法来动态地查询与提出的问题相关的信息。如果我们能向模型提供与提问内容相关的可靠信息,我们就可以指导模型利用这些信息来构建答案。(嵌入式技术)来实现有效的知识检索。原创 2025-05-20 11:21:27 · 808 阅读 · 0 评论 -
1.5 提示词工程(一)
随着大语言模型(LLM)和多模态模型的普及,AI已从简单的分类和预测工具发展为能够生成复杂内容的强大工具。然而,这些模型的“黑箱”特性使得其内部机制难以精确控制,因此需要通过提示词工程来引导模型输出符合需求的结果。提示词工程(Prompt Engineering)是生成式AI模型中的关键技术,通过优化输入提示,引导模型生成更准确和相关的输出。这一技术不仅提升了AI产品的竞争力,还催生了“提示词工程师”这一新兴职业,成为企业优化AI交互体验的重要手段。原创 2025-05-11 14:57:10 · 917 阅读 · 0 评论 -
1.4 大模型应用产品与技术架构
大模型应用的产品架构随着技术发展和场景需求不断演进,在演进的过程中人们提出了不同的应用产品架构和技术架构。原创 2025-04-26 22:50:19 · 627 阅读 · 0 评论 -
1.3 AI常见术语梳理
神经网络是一种受生物神经元启发的计算模型,由互连的节点(神经元)组成,通过调整连接权重学习数据中的复杂模式。其核心思想是分层抽象:底层处理原始数据(如像素),高层提取高级特征(如物体轮廓)。批量大小(Batch Size):单次训练样本数(影响内存与稳定性)。可以用减少幻觉,提升事实准确性。精确率(Precision)与召回率(Recall)的调和平均。隐藏层:通过权重矩阵计算特征(如全连接层、卷积层)。将用户流量随机分为A组(旧模型)和B组(新模型)。输出层:生成预测结果(如分类概率、生成文本)。原创 2025-04-20 14:49:26 · 685 阅读 · 0 评论 -
1.2 大模型技术架构
模型名称架构类型参数量级核心创新点文心一言(ERNIE)编码器-解码器混合架构千亿级知识增强、多模态统一建模通义千问(Qwen)纯解码器Transformer720B长上下文支持、多模态扩展混元(Hunyuan)混合专家(MoE)万亿级稀疏激活、多任务联合训练云雀(Lark)纯解码器优化架构未公开轻量化部署、端云协同混合专家+稀疏注意力16B~146B高效推理、数学与代码优化。原创 2025-04-20 14:15:27 · 919 阅读 · 0 评论 -
1.1 初识AI
AI已不再是可选项,而是必备基本技能。它是每个从项目,到产品,到研发再到测试质量交付,甚至各行各业的各个环节的基本技能。AI技术正在深刻重塑行业格局和每一个工程师,每一个人的工作模式。作为一个从业操作系统超过10年的工程师来说,无论产品形态是手机,IOT,汽车,AI已无处不在。行业领域 AI影响维度 典型案例软件工程 ★★★★★★★★★☆ (9/10) GitHub Copilot、AutoML、AI自动化测试。原创 2025-04-13 16:51:57 · 652 阅读 · 0 评论 -
2.4 【模型部署】Windows本地部署DeepSeek模型 --- Ollama篇(下)
大型语言模型(如 LLaMA、GPT 等)通常包含数十亿甚至数百亿个参数,导致模型文件非常大。为了便于管理和传输,模型文件会被分割成多个较小的分片。每个分片文件包含模型的一部分参数或权重,加载时需要将所有分片合并才能完整地加载模型。无网络连接,直接通过Ollama本地已经本地已经下载好的的Deepseek模型。原创 2025-03-09 22:51:01 · 1258 阅读 · 0 评论 -
2.3【模型部署】 Windows本地部署DeepSeek模型 --- Ollama篇(上)
Ollama 是一个本地部署大模型的开源项目,旨在简化大型语言模型(LLMs)的本地部署和使用。它提供了一个简单易用的框架,让用户能够在自己的设备上运行和微调各种语言模型,而无需依赖云服务或复杂的配置。Ollama 的目标是让开发者、研究人员和爱好者能够更轻松地探索和应用大型语言模型。原创 2025-03-09 19:10:35 · 1015 阅读 · 0 评论 -
2.2 【模型部署】本地部署DeepSeek模型 --- LM Studio篇(下)
选择不同的runtime,如下我通过选择了CPU llama.cpp (Windows)解决该问题,可以根据自己的硬件配置来选择不同的runtime。原创 2025-02-23 22:47:47 · 1685 阅读 · 0 评论 -
2.1【模型部署】本地部署DeepSeek模型 --- LM Studio篇(上)
LM Studio 是一款专为本地运行大型语言模型(LLMs)设计的工具,允许用户在个人电脑上轻松加载、管理和运行各种开源语言模型(如 LLaMA、Falcon、GPT-J 等)。通过LM Studio我们可以实现模型的完全离线运行,所有模型和数据都在本地处理,无需联网,保护隐私。它支持多种模型格式,包括兼容 Hugging Face 的模型格式(如 .bin、.ggml 等),方便用户导入和使用各种开源模型。原创 2025-02-23 22:41:53 · 1447 阅读 · 0 评论