【最优估计学习笔记】概率密度函数

本文详细探讨了概率密度函数的概念,包括其定义、几何解释,以及条件概率密度函数和联合概率密度函数的计算方法。重点介绍了多维随机变量的概率密度函数表达,并通过实例阐述其在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概率密度函数

概率密度函数是概率论里面最重要的概念之一,概率密度函数(Probability Density Functions,简称PDF)。

定义一个随机变量,记为xxx,概率密度函数是描述xxx概率属性最重要的工具。定义概率密度函数表达为p(x)p(x)p(x),其为非负值即p(x)≥0p(x)≥0p(x)0,并在其所能取值的区间内积分值为1,即:
∫abp(x)dx=1\int_{a}^{b}p(x)dx=1abp(x)dx=1,上式的意义就是用于描述一个随机变量在任何一个区间的概率,数学表示为:
Pr(c≤x≤d)=∫cdp(x)dx\text{Pr}(c≤x≤d)=\int_{c}^{d}p(x)dxPr(cxd)=cdp(x)dx
几何意义是下图所示阴影的面积:
在这里插入图片描述

条件概率密度函数

对于任意给定的yyy,在给定区间(a,b)(a,b)(a,b)内,条件概率密度函数p(x∣y)p(x|y)p(xy)都有如下公式成立:
∫abp(x∣y)dx=1\int_{a}^{b}p(x|y)dx=1abp(xy)dx=1

联合概率密度函数

对于一个nnn维随机变量x=(x1,x2,...,xN)\pmb{\text{x}}=(x_1,x_2,...,x_N)xxx=(x1,x2,...,xN),将x\pmb{\text{x}}xxxy\pmb{\text{y}}yyy串成一个更长的随机向量p(x,y)p(\pmb{\text{x,y}})p(x,yx,yx,y),在NNN维场景下,多维概率密度函数满足如下条件:

∫abp(x)dx=∫aNbN...∫a2b2∫a1b1p(x1,x2,...,xN)dx1dx2...dxN=1\int_{a}^{b}p(\pmb{\text{x}})d\pmb{\text{x}}=\int_{a_N}^{b_N}...\int_{a_2}^{b_2}\int_{a_1}^{b_1}p(x_1,x_2,...,x_N)dx_1dx_2...dx_N=1abp(xxx)dxxx=aNbN...a2b2a1b1p(x1,x2,...,xN)dx1dx2...dxN=1

其中a=(a1,a2,a3,...aN)\pmb{\text{a}}=(a_1,a_2,a_3,...a_N)aaa=(a1,a2,a3,...aN)b=(b1,b2,b3,...bN)\pmb{\text{b}}=(b_1,b_2,b_3,...b_N)bbb=(b1,b2,b3,...bN),后面会简化表达为a\pmb{\text{a}}aaab\pmb{\text{b}}bbb
在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hunter206206

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值