概率密度函数
概率密度函数是概率论里面最重要的概念之一,概率密度函数(Probability Density Functions,简称PDF)。
定义一个随机变量,记为xxx,概率密度函数是描述xxx概率属性最重要的工具。定义概率密度函数表达为p(x)p(x)p(x),其为非负值即p(x)≥0p(x)≥0p(x)≥0,并在其所能取值的区间内积分值为1,即:
∫abp(x)dx=1\int_{a}^{b}p(x)dx=1∫abp(x)dx=1,上式的意义就是用于描述一个随机变量在任何一个区间的概率,数学表示为:
Pr(c≤x≤d)=∫cdp(x)dx\text{Pr}(c≤x≤d)=\int_{c}^{d}p(x)dxPr(c≤x≤d)=∫cdp(x)dx
几何意义是下图所示阴影的面积:
条件概率密度函数
对于任意给定的yyy,在给定区间(a,b)(a,b)(a,b)内,条件概率密度函数p(x∣y)p(x|y)p(x∣y)都有如下公式成立:
∫abp(x∣y)dx=1\int_{a}^{b}p(x|y)dx=1∫abp(x∣y)dx=1
联合概率密度函数
对于一个nnn维随机变量x=(x1,x2,...,xN)\pmb{\text{x}}=(x_1,x_2,...,x_N)xxx=(x1,x2,...,xN),将x\pmb{\text{x}}xxx和y\pmb{\text{y}}yyy串成一个更长的随机向量p(x,y)p(\pmb{\text{x,y}})p(x,yx,yx,y),在NNN维场景下,多维概率密度函数满足如下条件:
∫abp(x)dx=∫aNbN...∫a2b2∫a1b1p(x1,x2,...,xN)dx1dx2...dxN=1\int_{a}^{b}p(\pmb{\text{x}})d\pmb{\text{x}}=\int_{a_N}^{b_N}...\int_{a_2}^{b_2}\int_{a_1}^{b_1}p(x_1,x_2,...,x_N)dx_1dx_2...dx_N=1∫abp(xxx)dxxx=∫aNbN...∫a2b2∫a1b1p(x1,x2,...,xN)dx1dx2...dxN=1
其中a=(a1,a2,a3,...aN)\pmb{\text{a}}=(a_1,a_2,a_3,...a_N)aaa=(a1,a2,a3,...aN),b=(b1,b2,b3,...bN)\pmb{\text{b}}=(b_1,b_2,b_3,...b_N)bbb=(b1,b2,b3,...bN),后面会简化表达为a\pmb{\text{a}}aaa和b\pmb{\text{b}}bbb。