自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 收藏
  • 关注

原创 pyqt5实现手写中文数字识别

基于这些观察结果,EfficientNet使用了一个称为Compound Scaling的方法,同时增加了模型的深度、宽度和分辨率,以在资源受限的环境下取得更好的性能。它在保持相对较高的准确率的同时,有效地优化了计算资源的利用。与传统的网络相比,GoogleNet具有更深的结构,但通过合理的设计和使用1x1的卷积核进行降维操作,成功地减少了计算复杂度和参数数量。在文本识别任务中,CRNN可以接收包含字符的图像作为输入,通过卷积层提取图像的特征,然后通过循环层对特征序列进行建模,最终输出对应的文本序列。

2023-09-05 21:41:16 314

原创 动物识别检测网页版

CNN的核心组件是卷积层(Convolutional Layer),它通过卷积运算提取输入数据的特征。卷积操作使用一个小的可学习的滤波器(也称为卷积核)在输入数据上进行滑动窗口形式的局部操作,从而捕捉到不同位置的局部特征。通过在不同的卷积层之间堆叠使用不同尺寸的卷积核,CNN可以逐渐抽取出图像的更高级别的特征。此外,CNN还包括池化层(Pooling Layer),用于降低特征映射的空间维度,减少模型参数数量,并增强模型的平移不变性。相比于传统的神经网络结构,CNN在处理这些数据上具有更好的性能和效率。

2023-09-05 21:40:20 251

原创 深度学习之微表情识别

​微表情识别是指通过分析和解读人脸上瞬间和微小的表情变化,来揭示人的真实情感状态和心理活动。微表情往往是不可控制的、短暂的表情,它们反映了人的内心真实感受,通常持续时间在1/4秒到1/30秒之间。需要注意的是,微表情识别技术仍然面临一些挑战,如数据采集的困难、特征提取的准确性和稳定性等问题。其中data文件下放的是微表情文件夹图片,一共7中表情,分别包括anger、disgust、fear、happy、normal、sad和surprised。常用的特征包括面部区域的位置、形状、纹理等信息。

2023-09-05 21:39:34 1514

原创 手势识别_ui界面

手势识别是指通过分析和解释人手在空间中的运动和形态,来识别和理解手势的意义和指令。手势识别技术可以应用于人机交互、虚拟现实、智能家居等领域,实现更自然、直观的界面操作和交互方式。特征提取:从预处理的手势数据中提取有代表性的特征,用于描述手势的运动和形态。可以是控制设备、交互操作、游戏动作等。虚拟现实与增强现实:手势识别可以用于虚拟现实游戏中的角色控制、手势交互界面的操作,以及增强现实中的手势反馈与指令。人机交互:通过手势识别可以实现触摸屏替代、手势控制电脑、手势操作手机等,提供更直观、自然的人机交互方式。

2023-09-05 21:38:28 236

原创 基于CNN卷积网络的人脸识别打卡签到_resnet_mobilenet_efficientnet等

人脸验证或人脸识别:在人脸识别任务中,根据特定的需求,可以进行人脸验证(验证一个人是否是某个指定的目标)或人脸识别(将人脸与多个人脸进行比对,判断其身份)。​人脸识别是一种将人脸图像或视频中的人脸进行自动检测、识别和验证的技术。它是生物特征识别的一种形式,通过分析人脸的几何特征、颜色信息和纹理特征等,将人脸与已知的人脸库进行比对或者判断是否匹配。运行03real_time_face_recognition.py会打开摄像头,将捕捉到的帧传给模型识别,根据若干张图片中识别的结果最多的对象,为最后打开的结果。

2023-09-05 21:37:24 252

原创 连续的手写中文汉字识别CRNN-多行汉字识别

CRNN(Convolutional Recurrent Neural Network)是一种结合了卷积神经网络(Convolutional Neural Network,CNN)和循环神经网络(Recurrent Neural Network,RNN)的模型结构。CRNN在文本识别任务中取得了很好的效果,其基本思想是将卷积神经网络用于提取输入序列的特征表示,然后通过循环神经网络对序列进行建模和预测。需要注意的是,CRNN的具体结构和参数设置可以根据不同的任务和数据集进行调整和优化,以获得最佳的性能表现。

2023-09-05 21:36:03 502

原创 人脸识别打卡签到系统pyqt界面

人脸验证或人脸识别:在人脸识别任务中,根据特定的需求,可以进行人脸验证(验证一个人是否是某个指定的目标)或人脸识别(将人脸与多个人脸进行比对,判断其身份)。​人脸识别是一种将人脸图像或视频中的人脸进行自动检测、识别和验证的技术。它是生物特征识别的一种形式,通过分析人脸的几何特征、颜色信息和纹理特征等,将人脸与已知的人脸库进行比对或者判断是否匹配。人脸检测:首先从输入的图像或视频中检测出人脸区域,通常使用基于机器学习或深度学习的人脸检测算法,如Haar级联分类器、HOG特征+SVM、卷积神经网络等。

2023-09-05 21:34:52 257

原创 yolov3交通牌检测_CCTSDB数据集检测

使用多层特征融合进行上下文建模:为了更好地利用图像的上下文信息,YOLOv3引入了多层特征融合的策略,将不同层次的特征进行融合,使模型能够更好地理解目标与背景之间的关系。单阶段检测:YOLOv3采用了单阶段的检测策略,将物体的检测和分类任务合并到一个神经网络中,直接从输入图像中预测目标位置和类别,而不需要借助额外的候选区域生成过程。多尺度特征提取:YOLOv3通过使用不同尺度的特征图来检测不同大小的目标。它引入了多个检测层,每个检测层负责检测一系列大小的目标,并通过级联的方式进行综合预测。

2023-09-05 21:19:11 365

原创 yolov3口罩识别检测_是否佩戴规范检测_qt界面

使用多层特征融合进行上下文建模:为了更好地利用图像的上下文信息,YOLOv3引入了多层特征融合的策略,将不同层次的特征进行融合,使模型能够更好地理解目标与背景之间的关系。单阶段检测:YOLOv3采用了单阶段的检测策略,将物体的检测和分类任务合并到一个神经网络中,直接从输入图像中预测目标位置和类别,而不需要借助额外的候选区域生成过程。多尺度特征提取:YOLOv3通过使用不同尺度的特征图来检测不同大小的目标。其中dataset文件夹下放的是口罩数据集,有图片和对应的标签文件,标签文件记录的是口罩的位置信息。

2023-09-05 21:16:03 168

原创 汉字识别crnn_qt界面

具体而言,CRNN首先通过卷积层提取输入序列的局部特征,然后通过池化层进行空间降采样,最后通过循环层(通常是LSTM或GRU)进行序列建模。在文本识别任务中,CRNN可以接收包含字符的图像作为输入,通过卷积层提取图像的特征,然后通过循环层对特征序列进行建模,最终输出对应的文本序列。它结合了CNN和RNN的优点,能够有效地处理序列数据,并提取其中的特征和上下文信息,为序列识别任务提供了一种强大的建模方法。类似地,CRNN通过卷积层提取音频的频谱特征,并通过循环层对特征序列进行时间建模,从而实现对语音的识别。

2023-09-05 21:14:10 197

原创 基于vgg的CT_COVID与CT_NonCOVID二分类识别

基于这些观察结果,EfficientNet使用了一个称为Compound Scaling的方法,同时增加了模型的深度、宽度和分辨率,以在资源受限的环境下取得更好的性能。卷积操作使用一个小的可学习的滤波器(也称为卷积核)在输入数据上进行滑动窗口形式的局部操作,从而捕捉到不同位置的局部特征。与传统的网络相比,GoogleNet具有更深的结构,但通过合理的设计和使用1x1的卷积核进行降维操作,成功地减少了计算复杂度和参数数量。VGG网络通常采用3x3的小型卷积核和2x2的池化核,以增加网络的深度和拟合能力。

2023-09-04 23:28:49 152

原创 中草药识别小程序

基于这些观察结果,EfficientNet使用了一个称为Compound Scaling的方法,同时增加了模型的深度、宽度和分辨率,以在资源受限的环境下取得更好的性能。与传统的网络相比,GoogleNet具有更深的结构,但通过合理的设计和使用1x1的卷积核进行降维操作,成功地减少了计算复杂度和参数数量。相比于之前的模型,VGG采用了更多的卷积层和池化层,达到了16或19个卷积层的深度。同时,VGG中的卷积层都使用了较小的3x3卷积核,并且连续堆叠多次,以增加网络的非线性表达能力。

2023-09-04 23:26:08 1056

原创 yolov4口罩目标检测识别

YOLOv4的核心思想是将目标检测任务转化为一个回归问题,通过预测目标的边界框位置和类别信息来完成检测任务。它采用了一系列的优化策略,包括使用更大的网络结构、引入新的特征提取模块、改进的数据增强技术以及更高级的训练策略。YOLOv4在性能方面取得了显著的提升,能够实现更精确的目标检测,并且具有较快的推理速度。因此,它在许多应用领域,如智能监控、无人驾驶、人脸识别等方面具有广泛的应用前景。​本次是使用yolov4目标检测做口罩的识别,包括已经做好标签的口罩数据集和整个代码的运行可以看bilibili。

2023-09-04 23:13:54 187

原创 CycleGAN_风格迁移+qt界面

这意味着输入一个图像到模型中进行转换后再转回原始域,应该能够恢复原始图像,从而保持图像之间的一致性。生成器负责将一个域中的图像转换成另一个域中的图像,而判别器则负责区分生成的图像和真实图像。CycleGAN是一种用于图像转换的深度学习模型,它能够将一个域中的图像转换成另一个域中的图像。具体而言,CycleGAN可以在两个不同的图像域之间进行无监督的图像转换,例如将马的图像转换成斑马的图像。它为无监督的图像转换提供了一种有效的解决方案,使得我们能够在不需要配对训练数据的情况下进行域间图像转换。

2023-09-04 23:12:04 202

原创 人流跟踪pyqt界面_v5_deepsort

每个版本都在算法结构、网络设计和性能方面进行了改进,从YOLOv1到YOLOv5,不断提高了目标检测的速度和准确率,使其成为计算机视觉领域中备受关注的算法之一。综合来说,YOLOv5 DeepSORT是一个强大的多目标跟踪系统,通过结合先进的目标检测和跟踪算法,能够在实时视频中准确地检测和跟踪多个目标,具有广泛的应用潜力,包括监控、自动驾驶、人机交互等领域。YOLOv5 DeepSORT是一个结合了YOLOv5和DeepSORT算法的目标检测与多目标跟踪系统。

2023-09-04 22:59:05 143

原创 基于传统检测算法hog+svm实现图像多分类

Qt 是一种流行的C++开发框架,提供了丰富的GUI组件和工具,可用于构建各种类型的应用程序,包括桌面应用程序、移动应用程序和嵌入式系统。这些传统图像分类检测算法在一些简单的图像分类任务上表现良好,但随着深度学习的发展,卷积神经网络(CNN)等深度学习算法在图像分类领域取得了显著的进展,特别是在大规模和复杂数据集上的分类任务中。提取的HOG特征将作为训练和测试的输入。总之,PyQt是一个强大的工具,使开发者能够使用Python语言开发跨平台的GUI应用程序,并利用Qt框架提供的丰富功能和工具。

2023-09-04 22:52:07 196

原创 基于传统检测算法hog+svm实现目标检测

​直接上效果图:代码展示:​数据集在data文件夹下需要检测的目标对象数据集放在positive文件夹下​不需要的检测对象放在negative文件夹下​运行01train_SVM.py即可训练训练结束后会保存模型在weights文件夹下运行02pyqt.py会有一个可视化的界面,通过点击按钮加载图片识别。​科普相关知识:PyQt 是一个用于开发图形用户界面(GUI)的Python绑定库。

2023-09-04 22:50:22 269

原创 003基于python深度学习的水果或其他物体识别小程序

基于这些观察结果,EfficientNet使用了一个称为Compound Scaling的方法,同时增加了模型的深度、宽度和分辨率,以在资源受限的环境下取得更好的性能。它在保持相对较高的准确率的同时,有效地优化了计算资源的利用。Flask 遵循了微型框架的理念,它提供了基本的功能和结构,同时保持灵活性和可扩展性,使开发人员能够根据自己的需求构建定制化的 Web 应用。与传统的网络相比,GoogleNet具有更深的结构,但通过合理的设计和使用1x1的卷积核进行降维操作,成功地减少了计算复杂度和参数数量。

2023-09-04 22:27:37 530

原创 002基于深度学习图像分割的墙体裂缝识别检测

在解码器的每一层,通过跳跃连接将对应的编码器层的特征图与解码器层的特征图进行合并,从而保留了多尺度的特征信息。随着深度学习的发展,基于Unet的改进和变种也不断涌现,进一步提升了图像分割的性能和效果。与传统的目标检测方法相比,Mask R-CNN能够为每个检测到的目标生成高质量的分割掩码,实现对目标的像素级别的精确分割。图割算法(Graph Cuts)和最小生成树算法(Minimum Spanning Tree)是一类基于图的分割方法,通过构建图来表示图像像素之间的关系,并找到分割图的最优路径来实现分割。

2023-09-04 22:24:45 765 1

原创 基于pyqt和卷积网络CNN的中文汉字识别

基于这些观察结果,EfficientNet使用了一个称为Compound Scaling的方法,同时增加了模型的深度、宽度和分辨率,以在资源受限的环境下取得更好的性能。与传统的网络相比,GoogleNet具有更深的结构,但通过合理的设计和使用1x1的卷积核进行降维操作,成功地减少了计算复杂度和参数数量。相比于之前的模型,VGG采用了更多的卷积层和池化层,达到了16或19个卷积层的深度。同时,VGG中的卷积层都使用了较小的3x3卷积核,并且连续堆叠多次,以增加网络的非线性表达能力。

2023-09-04 22:20:27 146

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除