代码随想录算法训练营day11(二叉树)

翻转二叉树

在这里插入图片描述

思路

  • 采用递归的思路
  • 可以前序遍历后序遍历,不能使用中序遍历
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def invert(self, cur):
        if not cur:
            return cur
        cur.left, cur.right = cur.right, cur.left     # 中
        self.invert(cur.left)    # 左
        self.invert(cur.right)   # 右

    def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        self.invert(root)
        return root

对称二叉树

在这里插入图片描述

思路

  • 使用递归后序遍历
  • 判断一边的左孩子是否等于另一边的右孩子一边的右孩子是否等于另一边的左孩子
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def symmetric(self,left,right):
        if left and not right:
            return False
        elif not left and right:
            return False
        elif not left and not right:
            return True
        elif left.val != right.val:
            return False
        res1 = self.symmetric(left.left, right.right)
        res2 = self.symmetric(left.right, right.left)
        res = True if res1 and res2 else False   
        return res

    def isSymmetric(self, root: Optional[TreeNode]) -> bool:
        if self.symmetric(root.left, root.right):
            return True
        else:
            return False

二叉树的最大深度

在这里插入图片描述

思路

  • 二叉树最大深度,其实就是求二叉树的层数
  • 使用递归
  • 后序遍历的思想:递归的核心思路是当前树的深度=max(左子树深度, 右子树深度) + 1
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        cur = root
        if not cur:
            return 0
        leftHeight = self.maxDepth(cur.left)    # 左
        rightHeight = self.maxDepth(cur.right)  # 右
        height = 1 + max(leftHeight, rightHeight)   # 中
        return height

二叉树的最小深度

在这里插入图片描述

思路

  • 最大深度求的是二叉树的层数,而最小深度求的是root最近的叶子节点的深度
  • 使用递归
  • 后序遍历
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def minDepth(self, root: Optional[TreeNode]) -> int:
        cur = root
        if not cur:
            return 0
        leftHeight = self.minDepth(cur.left)
        rightHeight = self.minDepth(cur.right)
        if not cur.left and cur.right: # 如果左子树为空,返回右子树的深度+1
            return 1+rightHeight
        if not cur.right and cur.left:   # 如果右子树为空,返回左子树的深度+1
            return 1+leftHeight
        return 1+min(leftHeight, rightHeight)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

^~^前行者~~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值