22【AUTOSAR自适应平台设计的概述01】杂项概念介绍

1.AUTOSAR自适应平台设计的概述

本小课题主要是让读者对AUTOSAR自适应平台设计的思路有个宏观的概念,不拘泥于具体的技术细节。
总结如下:

  • 概述AUTOSAR自适应平台(AP)的设计。
  • 为AP用户和实施者提供总体设计和关键概念

2.具体的章节由以下几个部分组成:

  • 技术范围和方法:
    介绍AP的背景知识。
  • 架构:
    描述AP的逻辑视图和物理视图。
  • 方法论与清单:
    独立章节,涵盖所有功能集群。
  • 功能集群概述:
    每个功能集群的介绍和关键概念。

3.预备的知识:

[1]Glossary, AUTOSAR_TR_Glossary.pdf.
[2]Main Requirement, AUTOSAR_RS_Main.pdf.
[3]Methodology for Adaptive Platform, AUTOSAR_TR_AdaptiveMethodology.pdf.

可以先了解下上述三个文章了解相关的featute

4.AUTOSAR平台

经典平台(CP):AUTOSAR经典平台标准满足了深层嵌入式ECU的需求,但不适用于新型ECU的复

社区物资交易互助系统-社区物资交易互助系统源码-基于Web的社区物资交易互助系统设计与实现 1、博主介绍:大厂码农,java领域创作者,专注于大学生项目实战开发,文章底部有博主联系方式,更多优质系统、项目定制请私信。 2、最新计算机软件毕业设计选题大全: https://blog.csdn.net/weixin_45630258/article/details/135901374 3、系统功能:本项目的功能演示效果,请点击博主主页,搜索关键词查看! 【代码介绍】 1、适用人群:计算机相关专业(如计算机、网络、信息安全、大数据、人工智能、通信、物联网、电信等)在校学生、老师下载使用。 2、代码用途:项目具有较高的学习借鉴价值,小白入门学习,也可作为毕设项目、课程设计、大作业的学习。 3、代码能力:如果基础还行,可在此项目代码进行修改,实现不同功能。 欢迎下载!欢迎交流学习!不清楚的可以私信问我! 【技术与部署】 (1)技术栈 后端:Java+SpringBoot/SSM+MyBatisPlus 前端:Vue+Ajax 数据库:MySQL 工具:Maven+IDEA+Navicat/SQLyog (2)技术版本 JDK:1.8+ Maven:≥3.0 MySQL:5.7/8.0 Node:14.x SpringBoot:2.x系列 Vue:2.x系列 【项目亮点/创新点推荐】 高分系统推荐:https://blog.csdn.net/weixin_45630258/article/details/135901374 亮点/创意的技术推荐:可视化图表统计、高德地图定位、人脸识别、支付宝沙箱、AI对话、在线直播、消息通知、MD5加密、登录验证码、邮箱验证、多文件上传、日历展示、操作日志、图像识别…… 【下载】 请放心下载使用!有问题请及时沟通交流。
基于Swin Transformer和SE模块的先进图像分类系统 项目概述 本项目实现了一个高效的图像分类系统,结合了Swin Transformer的强大特征提取能力和SE(Squeeze-and-Excitation)模块的通道注意力机制。系统提供了完整的训练流程、评估指标和可视化功能,适用于各种图像分类任务。 技术亮点 先进的模型架构: 基于Swin Transformer构建主干网络,利用其层次化窗口注意力机制捕获多尺度特征 创新性地集成SE模块,增强重要通道的特征表示 采用预训练权重初始化,加速模型收敛 全面的数据增强: 随机裁剪、水平翻转、颜色扰动等多种数据增强策略 标准化处理,适应预训练模型的输入要求 灵活的数据加载接口,支持自定义数据集 完善的训练框架: 支持多GPU训练和混合精度计算 丰富的评估指标:准确率、精确率、召回率、F1分数、特异度等 自动保存最佳模型和训练曲线 应用场景 本系统可广泛应用于: 医学影像分析:病理切片分类、X光图像诊断 工业质检:产品缺陷检测、质量分级 遥感图像处理:地物分类、目标识别 智能零售:商品识别、货架监控 农业应用:病虫害识别、作物分类 性能优势 更高的准确率:SE模块的引入使模型在多个基准数据集上表现优于标准Swin Transformer 更快的收敛速度:预训练权重和优化后的网络结构减少训练时间 更强的泛化能力:综合数据增强策略提升模型鲁棒性 更全面的评估:提供6种专业评估指标,全方位衡量模型性能
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

糖果Autosar

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值