编程求1*2+3*4+..+99*100

分析:本题很简单,只要定义一个循环累加即可。

#include <stdio.h>
int main(){
	int i,sum = 0;
	for(i = 1;i<=99;i+=2){
		printf("%d*%d\n",i,i+1);
		sum+=i*(i+1);
	}
	printf("%d\n",sum);
}

运行结果:

### 计算数列的值 要实现计算数列 \(1 \times 2 \times 3 + 3 \times 4 \times 5 + \ldots + 99 \times 100 \times 101\) 的值,可以采用循环结构来完成这一任务。以下是基于 C 语言的一个解决方案: #### 实现代码 ```c #include <stdio.h> int main() { long long sum = 0; // 使用long long防止溢出 int i = 1; while (i <= 99) { sum += (long long)i * (i + 1) * (i + 2); // 当前项的值累加到总和中[^1] i += 2; // 跳过偶数,只处理奇数项 } printf("The result is %lld\n", sum); return 0; } ``` 上述代码通过 `while` 循环逐一计算每一项的值并将其累加至变量 `sum` 中。每次迭代时,当前项被定义为连续三个整数相乘的形式,即 \(n \times (n+1) \times (n+2)\),其中 \(n\) 是从 1 开始的奇数。 --- ### 数学分析与优化 除了直接使用循环外,还可以尝试寻找该数列的通项公式以及其和公式的解析表达形式。然而,在本例中由于涉及的是非线性多项式序列,难以找到简单的闭合解。因此,通常情况下仍需依赖于编程手段逐项累加得出结果。 对于类似的简单等差或等比数列,则可能有更高效的算法存在。例如,当面对像 \(1 + 2 + 3 + \ldots + n\) 这样的问题时,可以直接应用高斯和公式 \(S_n=\frac{n(n+1)}{2}\)[^3] 来快速获得答案而无需显式遍历每一个元素。 在此特定场景下,因为不存在已知简洁的代数表示法简化整个过程,所以采取逐步累积的方法是最实际的选择之一。 --- ### 性能考量 需要注意的是,尽管现代计算机能够轻松应对这样的运算量级,但在设计此类程序时仍然应当考虑数据类型的选取以避免潜在的数据溢出风险。这里选用 `long long` 类型存储中间结果及最终总计数值正是出于此目的——确保即使在最大边界条件下也能容纳正确的数值范围。 此外,虽然递归是一种优雅的方式来解决问题,但对于这种需要大量重复调用自身的情况来说并不推荐使用递归方式,因为它可能会带来额外栈空间开销甚至引发堆栈溢出错误[^4] 。相比之下,迭代版本更加高效稳定。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值