用gensim短语发现功能增强jieba中文分词效果

本文介绍了一种利用Gensim和jieba库进行中文文本双词短语提取的方法。通过将文本切割并转换为语料库,设置参数以适应小型语料库,然后应用Phrases模型来识别常见双词组合。最终,该方法能有效提升中文文本处理的效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import jieba
import gensim

mddesc = ['测试数据库','用户支付表','支付金额','支付用户']
train_corpus = []
for desc in mddesc:
train_corpus.append("/".join(jieba.cut(desc)).split("/"))
train_corpus.append("/".join(jieba.cut(desc)).split("/"))

#set the params(min_count, threshold) carefully when you use small corpus.
phrases = gensim.models.phrases.Phrases(train_corpus, min_count = 1, threshold=0.1)
bigram = gensim.models.phrases.Phraser(phrases)
input = "从用户支付表中选择支付金额大于5的用户。"
inputarr = "/".join(jieba.cut(input)).split("/")
repl = [s.replace("_","") for s in bigram[inputarr]]
print(repl)


参考:

1. https://radimrehurek.com/gensim/models/phrases.html

2. http://www.nltk.org/howto/collocations.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值