论文阅读:High-Resolution Image Synthesis with Latent Diffusion Models

本文介绍了一种名为LDM的潜在扩散模型,它通过在压缩的潜在空间中优化来解决高分辨率图像合成中的计算效率问题。实验表明,LDM在保持高质量的同时显著减少了计算成本,适用于多种图像生成任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

High-Resolution Image Synthesis with Latent Diffusion Models

论文链接
代码链接

What’s the problem addressed in the paper?(这篇文章究竟讲了什么问题?比方说一个算法,它的 input 和 output 是什么?问题的条件是什么)

  • 这篇文章提出了一种合成高分辨率图片的潜在空间扩散模型(LDM),解决了在像素空间中优化Diffusion Models时面临的高计算开销问题。
  • 下图是LDM的结构流程图,从左到右的三个模块分别是:感知图片压缩(Perceptual Image Compression),潜在扩散模型(Latent Diffusion Model),和条件机制模块(Condition mechanism)。首先,原始图片 x x x在像素空间中被感知压缩模型压缩为潜在空间特征 z z z,然后,Unet通过扩散过程(向 z z z中添加噪声和去除噪声)重构了潜在空间特征
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值