高等数学-求极限

一.基本概念

         1.无穷小

                 limf(x),x\rightarrow 0,limf(x)=0,就称f(x)是x趋近于零的无穷小量。

         2.无穷小的性质

                  1.函数有极限的充要条件是函数可以写成一个常数和一个等价无穷小之和,即

               \lim f(x)=A\Leftrightarrow A+\alpha (x),其中\alpha \left ( x \right )为该极限过程中的无穷小。

                  2.有限个无穷小的和(差积)仍是无穷小。

                  3.有界量(\sin x \cos x)与无穷小的乘积仍是无穷小.

              3.高阶无穷小的运算法则

                  设n  m  为正整数,则有

                     (1) 低价吸高阶:\alpha \left ( x^{n} \right )\pm \alpha \left ( x^{m} \right )=\alpha \left ( x^{l} \right ),l=min[m.n]

                       (2)   乘法的叠加:x^{m}\cdot \alpha \left ( x^{n} \right )= \alpha \left ( x^{m+n} \right )

                       (3)   非零常数不影响阶数:\alpha \left ( x^{m} \right )=\alpha \left ( kx^{m} \right )=k\alpha \left ( x^{m} \right ) k\neq 0

               4.常见函数的极限

                      x\rightarrow +\infty , e^{x}\rightarrow +\infty ,\arctan x\rightarrow \frac{\pi }{2}

                      x\rightarrow -\infty ,e^{x}\rightarrow0,\arctan x\rightarrow-\frac{\pi }{2}

                      \lim\frac{\sin x}{x}=1,x\rightarrow0\lim\frac{\sin x}{x}\rightarrow1                                                                                               

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值