一、什么是线性结构
线性结构(Linear Structure)是一种有序数据项的集合,其中每个数据项都有唯一的前驱和后驱。
- 除了第一个没有前驱,最后一个没有后续
- 新的数据项加入到数据集中时,只会加入到原有某个数据项之前或之后。
- 具有这种性质的数据集,就称为线性结构。
线性结构总有两端,在不同的情况下,两端的称呼也不同。
- 有时候称为“左”“右”或“前”“后”
- 有时候称为“顶”“底”
不同线性结构的关键区别在于数据项增减的方式,有的结构只允许数据项从一端添加或删除(栈、队列),而有的结构则允许数据项从两端添加或删除(双端队列)。
二、栈(Stack)
2.1 栈的概念介绍及实现
一种有次序的数据项集合,在栈中,数据项的加入和移除都仅发生在同一端。
- 这一端叫栈顶(Top),另一端就叫栈底(Base)
- 日常生活中有很多栈的应用
- 距离栈底越近的数据项,留在栈中的时间就越长。最新加入栈的数据项会被最先移除。
- 这种次序通常称为“后进先出 (Last in first out, LIFO)”,这是一种基于数据项保存时间的次序,时间越短的离栈顶越近,而时间越长的离栈底越近。
这种访问次序翻转的特性,我们在某些计算机操作上碰到过:
- 浏览器的“后退back”按钮,最先back的是最近访问的网页
- Word的“Undo”按钮,最先撤销的是最近的操作
抽象数据类型“栈”定义为如下的操作(python):
使用Python当中的List简单实现“栈”:
class Stack():
def __init__(self):
self.items = []
def isEmpty(self):
return self.items == []
def push(self, item):
self.items.append(item)
def peek(self):
return self.items[-1]
def size(self):
return len(self.items)
def pop(self):
item = self.items.pop()
return item
2.2 栈的应用
2.2.1 简单括号匹配
这里我们首先应用上面实现的栈去解决一个简单的括号匹配问题。
问题描述:
传入一串括号序列,判断此序列中的开闭括号是否能够正确地相互匹配。
首先,每个开括号要恰好对应一个闭括号;其次,每对开闭括号要正确的嵌套。
- 正确的括号:(()()())、(((())))、(()((()())))
- 错误的括号:(((())、()))、(()()(()
from Stack import Stack
def parChecker(symbolString):
s = Stack()
balanced = True
index = 0
while index < len(symbolString) and balanced:
symbol = symbolString[index]
if symbol