【数据结构】线性结构:栈(Stack)

本文详细介绍了线性结构中的栈,包括栈的概念、实现方式以及多种应用,如括号匹配、进制转换、表达式转换和后缀表达式求值。通过实例展示了栈的"后进先出"特性及其在解决问题中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、什么是线性结构

线性结构(Linear Structure)是一种有序数据项的集合,其中每个数据项都有唯一的前驱后驱

  • 除了第一个没有前驱,最后一个没有后续
  • 新的数据项加入到数据集中时,只会加入到原有某个数据项之前或之后。
  • 具有这种性质的数据集,就称为线性结构。

线性结构总有两端,在不同的情况下,两端的称呼也不同。

  • 有时候称为“左”“右”或“前”“后”
    在这里插入图片描述
  • 有时候称为“顶”“底”
    在这里插入图片描述

不同线性结构的关键区别在于数据项增减的方式,有的结构只允许数据项从一端添加或删除(栈、队列),而有的结构则允许数据项从两端添加或删除(双端队列)。
在这里插入图片描述

二、栈(Stack)

2.1 栈的概念介绍及实现

一种有次序的数据项集合,在栈中,数据项的加入和移除都仅发生在同一端
在这里插入图片描述

  • 这一端叫栈顶(Top),另一端就叫栈底(Base)
  • 日常生活中有很多栈的应用
    在这里插入图片描述
  • 距离栈底越近的数据项,留在栈中的时间就越长。最新加入栈的数据项会被最先移除。
  • 这种次序通常称为“后进先出 (Last in first out, LIFO)”,这是一种基于数据项保存时间的次序,时间越短的离栈顶越近,而时间越长的离栈底越近。
    在这里插入图片描述

这种访问次序翻转的特性,我们在某些计算机操作上碰到过:

  • 浏览器的“后退back”按钮,最先back的是最近访问的网页
    在这里插入图片描述
  • Word的“Undo”按钮,最先撤销的是最近的操作

抽象数据类型“栈”定义为如下的操作(python):
在这里插入图片描述
在这里插入图片描述

使用Python当中的List简单实现“栈”:

class Stack():
    def __init__(self):
        self.items = []

    def isEmpty(self):
        return self.items == []

    def push(self, item):
        self.items.append(item)

    def peek(self):
        return self.items[-1]

    def size(self):
        return len(self.items)

    def pop(self):
        item = self.items.pop()
        return item

2.2 栈的应用

2.2.1 简单括号匹配

这里我们首先应用上面实现的栈去解决一个简单的括号匹配问题
问题描述
传入一串括号序列,判断此序列中的开闭括号是否能够正确地相互匹配。
首先,每个开括号要恰好对应一个闭括号;其次,每对开闭括号要正确的嵌套。

  • 正确的括号:(()()())、(((())))、(()((()())))
  • 错误的括号:(((())、()))、(()()(()

在这里插入图片描述

from Stack import Stack

def parChecker(symbolString):
    s = Stack()
    balanced = True

    index = 0
    while index < len(symbolString) and balanced:
        symbol = symbolString[index]
        if symbol 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值