树简介
对于树的基本认识,我们很容易通过我们平常所见到的树来理解:一棵树,有一个根,根往上又会分叉出大树枝,大树枝又会分叉出小树枝,以此往复,直到最后是叶子。而作为数据结构的树也是类似的,只不过我们通常将它倒着画。树的应用也相当广泛,例如在文件系统,数据库索引中的应用等。本文会对树的基本概念做介绍,但重点介绍二叉查找树。

树的定义
树是一种无向图,其中任意两个节点间存在唯一一条路径。树常常用一种递归的方式来定义,它是一种数据结构,要么为空,要么具有一个值并且有零个或多个孩子,而每个孩子又是树。
例如下图一棵树,任意两个节点间只有一条路径可到达:

但下图并非树:

因为从节点root到节点b并非只有一条路径。
树的种类
我们可能已经听过很多树的名词,例如,红黑树,霍夫曼树,B树,B+树,平衡二叉树等等,而本文将要介绍二叉查找树,很多其他树都是它的变种,不像链表的线性访问,二叉查找树的大部分操作时间复杂度都为O(logN)。
常见名词解释
在学习二叉查找树之前,必须要先了解一些名词,我们借助下面的图来了解,如果已经清楚了可以跳过此节。
介绍树的基本名词:
根节点:root节点没有父节点,我们把它称为根节点
父节点:如b节点的父节点为root节点
子节点:在图三中,root有三个孩子,分别是b,c,d,它们都是root的子节点
兄弟节点:b有两个兄弟节点,c,d,因为它们有相同的父节点root
叶子节点:e f等节点,它们没有子节点,因此是叶子节点。
树的深度:树的深度等于它的最深的树叶的深度,而树叶的深度为从根到本叶子节点的路径长(边数)。根节点的深度为0,例如,图三树的深度root->b->e(也可选其他树叶的深度)为2。
树的层:树的深度+1,根节点的层为1。
二叉树:如图四,每个节点最多两个子节点,


二叉查找树
二叉树是一种树的特殊形式,它的每个节点最多两个孩子节点,分别为左孩子和右孩子。而二叉查找树在此基础上,还有一个特点,就是每个节点比它左子树的节点值都要大,而比右子树的节点值都要小。
二叉查找树操作
二叉查找树常见操作有插入,查找,删除以及遍历。而实际上二叉查找树既可以使用数组来实现,也可以使用链表,本文采用链表来实现。另外本文也排除了两个节点存在相同值的情况。
节点定义
我们使用一个结构体来定义它: