
知识图谱:从0到 ∞
文章平均质量分 92
知识图谱:从0到 ∞
小胡说技书
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
GraphRAG技术体系:从理论基础到企业实践的完整指南
GraphRAG(图检索增强生成)代表了AI知识处理技术的重大突破,通过将传统RAG与知识图谱技术深度融合,实现了从"信息检索"到"知识推理"的质的飞跃。本指南深入剖析GraphRAG的技术原理,详解其双阶段处理模型、Leiden社区检测算法、多模式查询策略等核心技术。不同于传统RAG的扁平化检索,GraphRAG能够捕捉实体间的复杂关系网络,支持多跳推理和整体性分析,在处理复杂企业知识时表现出显著优势。原创 2025-07-14 14:45:57 · 907 阅读 · 0 评论 -
GraphRAG核心提示词工程完整中文版
GraphRAG(图增强检索生成)作为下一代AI知识处理技术,正在革命性地改变我们处理复杂信息的方式。本文档深度解析GraphRAG系统的核心:提示词工程。文档提供了13个精心设计的核心提示词完整中文版本,涵盖实体关系抽取、社区报告生成、局部/全局搜索、DRIFT动态检索等关键功能。每个提示词都经过实战验证,包含详细的参数说明、格式要求和优化策略。原创 2025-07-14 14:45:18 · 642 阅读 · 0 评论 -
GraphRAG Docker化部署,接入本地Ollama完整技术指南:从零基础到生产部署的系统性知识体系
本技术指南系统性地解析GraphRAG Docker化部署的完整技术体系,从基础概念到生产实践提供深度技术洞察。文章详细阐述GraphRAG相对传统RAG的核心技术优势,深入剖析Docker容器化架构设计原理,并通过实际部署案例分析常见错误模式与解决方案。内容涵盖Dockerfile最佳实践、网络配置策略、性能优化方法、监控告警体系等关键技术要点。特别针对实体关系抽取、知识图谱构建、流式响应等核心功能提供技术实现细节。原创 2025-07-13 20:39:47 · 805 阅读 · 0 评论 -
20、知识图谱(概念重新梳理):从符号逻辑到认知智能的演进之路
这是一篇系统性阐述知识图谱技术的深度文章,从古希腊亚里士多德的三段论逻辑出发,追溯知识表示的哲学根源,详细讲解了知识图谱的理论基础、技术架构和实现方法。文章涵盖了本体工程、知识抽取、推理引擎、存储方案等核心技术,并深入分析了知识图谱与大语言模型的协同演进,探讨了从传统知识图谱向认知图谱的跃迁。同时结合金融风控、医疗健康等实际应用场景,为读者提供了完整的知识图谱方法论和实践指南。原创 2025-07-13 17:05:28 · 1085 阅读 · 0 评论 -
知识图谱推理:从符号逻辑到认知智能的演进之路(简要阅读论文:A Survey of Task-Oriented Knowledge Graph Reasoning Status...)
作者的论文,图文并茂,综述论文,推荐:A Survey of Task-Oriented Knowledge Graph Reasoning Status, Applications, and Prospects。梳理了六大核心任务类型:静态单步推理、多步路径推理、动态时序推理、多模态融合、少样本学习和归纳式推理。从技术层面,详细分析了知识图谱嵌入、规则学习、图神经网络和大语言模型等主流方法的优缺点与适用场景。文章不仅提供了完整的技术栈对比和实践指导,还深入讨论了稀疏性、不确定性、可解释性等核心挑战原创 2025-07-10 15:39:35 · 777 阅读 · 0 评论 -
JSON-LD 开发手册
这是一份全面深入的JSON-LD技术指南,从语义Web的哲学基础出发,系统性地探讨了JSON-LD如何实现从传统数据处理向语义理解的范式转变。文档详细解析了@符号家族的完整体系,涵盖身份标识、值处理、结构组织等核心功能,深入剖析了扩展、压缩、框架化、规范化四大核心算法的工作机制。更进一步,文档探讨了作用域上下文、容器类型、类型继承等高级特性的实际应用模式,并提供了动态上下文管理和缓存策略的工程实践方案。原创 2025-06-30 21:09:01 · 986 阅读 · 0 评论 -
19.自动化知识图谱构建:理论、方法与实践体系
本文档系统阐述了自动化知识图谱构建的完整理论与实践体系,从基础概念到企业级应用,深入涵盖深度学习技术、工具链集成、领域优化策略与质量保证机制,为组织提供全面专业的技术建设指导方案与实施最佳实践建议。原创 2025-06-25 16:44:35 · 1378 阅读 · 0 评论 -
JSON-LD技术深度解析:从语义网理想到现实应用的完整指南(JSON和知识图谱的桥梁)
JSON-LD是W3C推荐的语义数据标准,让机器理解数据含义,保持JSON完全兼容性同时实现语义增强,广泛应用于知识图谱构建和AI智能系统集成,推动语义Web技术发展和数据互联互通新时代到来。原创 2025-06-25 12:55:02 · 1009 阅读 · 0 评论 -
18.自动化生成知识图谱的多维度质量评估方法论
本文系统探讨了知识图谱质量评估的多维方法论体系,涵盖结构、语义、事实、应用和认知五个维度。结构维度评估包括拓扑结构和逻辑一致性,关注图谱的网络特性和逻辑规则;语义维度评估强调语义一致性和表示质量,确保概念和关系的准确表达;事实维度评估聚焦事实准确性和完备性,验证信息的真实性和覆盖度;应用维度评估通过具体任务(如知识问答和推荐系统)间接衡量图谱质量;认知维度评估结合专家评审和众包验证,提供人机协同的全面评价。该框架为研究者和实践者提供了全面的知识图谱质量评估工具和方法。原创 2025-05-17 22:24:04 · 1218 阅读 · 0 评论 -
从逻辑思维到方法论(DMBOK2)并以知识图谱实践指导:构建企业级思维与执行框架
从逻辑思维到知识图谱的实践是一个系统化过程,贯穿理论基础、方法论转化和具体实施。以目标为导向:知识图谱建设应服务于明确的业务目标,而非技术而技术循序渐进:从小规模试点开始,通过迭代扩展规模和深度平衡方法:综合运用自上而下和自下而上方法,取长补短重视基础:投入充分资源建立核心本体和质量控制机制能力建设:培养跨领域团队,建立持续学习和知识更新文化生态思维:将知识图谱视为企业知识生态系统的一部分,与其他系统协同演进。原创 2025-05-07 01:15:39 · 1373 阅读 · 0 评论 -
企业级知识库建设:自建与开源产品集成的全景解析 —— 产品经理、CTO 与 CDO 的深度对话
本文将结合技术细节和工具实践,对自建方案与开源产品集成两大路径进行深入对比和解析,并以大表格形式直观呈现当前主流产品的特点,供企业在产品选择时参考。:在对核心竞争力要求较高的领域自主研发,同时在标准化模块上充分利用开源产品的成熟解决方案,既保证定制化需求,又能缩短上线周期,降低整体研发与运维成本。以下从具体实施流程、技术难点、数据治理及长期发展等方面进行深入对比分析。下表汇总了当前较为成熟的几套产品及相关开源项目,从产品功能模块、优势、劣势、适用场景及技术要求等多维度进行对比,直观展示各产品的特点与局限。原创 2025-03-29 22:35:27 · 1125 阅读 · 0 评论 -
知识库中嵌入模型(Embedding Models)与重排序模型(Re-ranking Models)推荐工具与库
知识库作为信息管理和知识发现的核心平台,已经广泛应用于搜索引擎、问答系统、智能客服、推荐系统等领域。然而,传统的基于关键词匹配的检索方法往往难以捕捉深层次的语义关联,导致检索效果不佳。为了解决这一问题,嵌入模型和重排序模型应运而生。原创 2025-03-28 21:37:31 · 1667 阅读 · 0 评论 -
17.企业级知识图谱中的知识库全景解析(基本概念、 5W2H视角知识库、存储格式分类与技术对比、实践路径与架构设计、案例)
本文系统探讨了知识库在知识图谱中的作用和构建路径,从数据采集、预处理、语义标注到数据模型构建、存储选择与智能查询,明确了知识库在整合跨部门数据、实现智能推理和决策支持中的关键价值,为企业数字化转型提供了坚实的技术支撑。原创 2025-02-15 22:18:05 · 1919 阅读 · 0 评论 -
16.知识图谱中的本体、实体、属性与关系:区别与联系
本体、实体、属性和关系是知识图谱构建的核心要素,每个部分都有其独特的作用和重要性。通过合理地设计这些要素的关系,可以构建出有效、灵活且具有扩展性的知识图谱。在实际开发中,深入理解它们之间的区别和联系,有助于开发者在知识图谱的设计与应用中更好地实现业务需求。对于企业而言,清晰的知识建模可以在提升数据质量、优化信息查询、支持智能决策等方面发挥重要作用,特别是在大数据与人工智能日益发展的背景下,构建一个科学的知识图谱已经成为企业数字化转型的重要组成部分。原创 2025-01-25 19:51:14 · 2382 阅读 · 0 评论 -
15.知识图谱的知识融合概述与实践
知识融合是指将多源、异构数据进行对齐、整合与推理,最终生成语义一致、结构统一的知识图谱的过程。这一过程不仅包括实体的合并,还涉及到关系的规范化及矛盾数据的解决,目标是使数据之间形成可解释、可复用的关联网络。知识融合是知识图谱构建的核心环节,其质量直接决定了知识图谱的准确性、完整性和应用价值。从传统的基于规则方法到现代的机器学习与深度学习方法,知识融合技术已经经历了从人工主导到智能化转变的过程。原创 2025-01-25 19:23:45 · 2779 阅读 · 0 评论 -
14.杂谈:领域知识库与知识图谱:概念、关系与重要性
领域知识库和知识图谱是现代数据管理和人工智能领域中的两个重要工具。它们在知识存储、结构化处理、语义理解等方面发挥着重要作用。构建高效的领域知识库不仅能够提升知识管理效率,也能够促进知识的创新与应用。而知识融合则是确保跨领域知识能够协同工作的关键因素。只有通过高效的知识管理与融合,才能在快速发展的技术浪潮中保持竞争力。在构建领域知识库和知识图谱的过程中,实践是最好的老师,只有通过持续的实践与探索,才能实现知识的真正价值。原创 2025-01-24 21:35:44 · 1241 阅读 · 0 评论 -
13.快速构建领域知识库的完整指南:结合 ChatGPT 与 Python 提升效率
领域知识库的构建不仅是知识管理的核心,更是提升学习效率、加速技术实践的利器。如何快速、有效地构建和维护知识库?本文将从提示词设计、数据生成与调整、代码实现三个部分,结合实践经验,为您详细解析。原创 2025-01-24 19:13:47 · 1914 阅读 · 0 评论 -
12.构建领域知识图谱:从概念到实践——知识图谱入门(领域知识图谱的特点、知识图谱构建流程、模式设计、知识获取与整合、图谱构建与存储、构建实践案例、未来思考)
随着人工智能技术的成熟,知识图谱作为一种新兴的数据结构和推理工具,在细分领域中展现出巨大的价值。从教育到医疗,再到金融和智能制造,领域知识图谱正逐渐成为各行业优化决策与服务的核心工具。本文以教学图谱为案例出发点,详细介绍如何构建一个领域知识图谱,并分享相关实践经验。原创 2024-12-05 19:49:04 · 2926 阅读 · 0 评论 -
知识图谱入门——11:构建动态图谱渲染应用:Vue3与Neo4j的集成与实践
这篇博客将带你深入了解如何利用Vue.js、D3.js以及Neo4j,开发一个能够实时渲染图谱节点和关系的应用。我们将从零开始,介绍如何搭建开发环境、安装依赖、与Neo4j数据库交互、到最终的图谱可视化实现(为方便演示,服务端先不搭建)。原创 2024-10-07 18:25:18 · 2939 阅读 · 0 评论 -
知识图谱入门——10:使用 spaCy 进行命名实体识别(NER)的进阶应用:基于词袋的实体识别与知识抽取
本文将详细探讨如何在 spaCy 中实现自定义实体抽取,包括使用词袋、批量添加模式、加载外部文件、使用自定义组件和结合正则表达式进行复杂匹配。原创 2024-10-05 17:57:25 · 2143 阅读 · 0 评论 -
知识图谱入门——9: spaCy中命名实体识别(NER)任务中的预定义标签详解及案例(GPE、MONEY、PRODUCT、LAW、FAC、NORP是什么?)
在这篇文章中,我们将系统地介绍 spaCy 中命名实体识别的常见 **预定义标签**,并探讨这些标签在实际应用中的意义。以及案例修改标签原创 2024-10-05 17:19:46 · 2929 阅读 · 0 评论 -
知识图谱入门——8: KG开发常见数据格式:OWL、RDF、XML、GraphML、JSON、CSV。
在知识图谱开发中,数据格式和语义表达至关重要。本文将详细论述OWL、RDF、XML、GraphML、JSON、CSV等格式的特点、优缺点及适用场景,帮助读者全面理解这些数据结构及其在知识图谱中的应用。原创 2024-10-04 16:08:59 · 2701 阅读 · 0 评论 -
知识图谱入门——7:阶段案例:使用 Protégé、Jupyter Notebook 中的 spaCy 和 Neo4j Desktop 搭建知识图谱
在 Windows 环境中结合使用 **Protégé**、**Jupyter Notebook** 中的 **spaCy** 和 **Neo4j Desktop**,可以高效地实现从自然语言处理(NLP)到知识图谱构建的全过程。本案例将详细论述环境配置、步骤实现以及一些扩展和不足之处。原创 2024-10-04 15:08:38 · 2250 阅读 · 0 评论 -
知识图谱入门——6:Cypher 查询语言高级组合用法(查询链式操作、复杂路径匹配、条件逻辑、动态模式创建,以及通过事务控制和性能优化处理大规模数据。
这些组合用法涉及**查询链式操作**、**复杂路径匹配**、**条件逻辑**、**动态模式创建**,以及通过**事务控制和性能优化**处理大规模数据。原创 2024-10-03 16:15:41 · 1964 阅读 · 0 评论 -
知识图谱入门——5:Neo4j Desktop安装和使用手册(小白向:Cypher 查询语言:逐步教程!Neo4j 优缺点分析)
知识图谱入门——5:Neo4j Desktop安装和使用手册(小白向:Cypher 查询语言:逐步教程!Neo4j 优缺点分析)原创 2024-10-03 16:19:22 · 6784 阅读 · 5 评论 -
知识图谱入门——4:Protégé 5.6.4安装和主要功能介绍、常用插件(2024年10月2日):知识图谱构建的利器
知识图谱入门——4:Protégé 5.6.4安装和主要功能介绍、常用插件(2024年10月2日):知识图谱构建的利器原创 2024-10-02 15:41:09 · 4673 阅读 · 7 评论 -
知识图谱入门——3:工具分类与对比(知识建模工具:Protégé、 知识抽取工具:DeepDive、知识存储工具:Neo4j)
构建知识图谱是一个复杂的过程,从知识建模、抽取到存储,每个环节都需要合适的工具。选择时需要结合项目的具体需求和技术要求。如果你的项目涉及初学者学习或中小型项目,Protégé和Neo4j的组合会是不错的开始;如果需要更复杂的推理和大规模数据处理,DeepDive或等工具则更加适合。原创 2024-10-02 13:01:44 · 2856 阅读 · 0 评论 -
知识图谱入门——2:技术体系基本概念:知识表示与建模、知识抽取与挖掘、知识存储与融合、知识推理与检索
知识图谱的构建从表示、抽取到推理,是一个系统性的过程。对于刚入门的开发者,理解基本概念和掌握常用工具是学习知识图谱的第一步。原创 2024-10-01 20:53:30 · 812 阅读 · 0 评论 -
知识图谱入门——1:基本概念、为什么要用?核心步骤、常用工具与技术、应用场景
知识图谱是一种用来表示事物及其关系的结构化方式,它通过节点(实体)和边(关系)将数据连接成网状结构,使得计算机可以更好地理解和处理复杂信息。想象一下,在一张地图上画出每个城市(实体)和它们之间的道路(关系),这就是知识图谱的基本理念。原创 2024-10-01 20:30:30 · 2112 阅读 · 0 评论