人工神经网络中的FullyConnectedLayer(全连接层)、LocallyConnectedLayer(局部连接层)、CNN(卷积神经网络)的定义

本文深入解析了人工神经网络中的三种关键层:全连接层(FullyConnectedLayer),具有局部连接和权值共享特性的卷积神经网络(CNN),以及权值不共享的局部连接层(LocallyConnectedLayer)。通过对比这些层的工作原理,帮助读者理解不同神经网络层在实际应用中的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工神经网络中的FullyConnectedLayer(全连接层)、LocallyConnectedLayer(局部连接层)、CNN(卷积神经网络)的定义

FullyConnectedLayer

普通的线性连接层,某一层的输出向量中的单个元素与输入向量中的每一个元素都有连接。

CNN(卷积神经网络)

卷积操作相对于全连接层具有局部连接、权值共享的特点。【局部连接】就是某一层的输出向量中每个元素与输入向量的部分元素连接,连接变少网络中的参数(权值)量就变少了,连接变少也会使计算量变少;【权值共享】就是卷积核在输入数据(一般是1维、2维、3维tensor)上移动时权值是共用的,这进一步使网络中的参数量减少。

LocallyConnectedLayer

局部连接层相当于权值不共享的卷积层,它有【局部连接】的特点,但是卷积核每移动一个位置卷积核的参数(权值)都会更换。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值