【NVIDIA Jetson TK1】一,开发板重装ubuntu系统,重新刷机,重新烧系统,恢复系统

本文提供了TK1开发板遇到各种问题后的刷机解决方案,包括前期准备、下载驱动和固件、准备刷机环境及具体刷机步骤。同时,还记录了解决图形驱动问题、登录界面死循环等常见问题的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1,说明

tk1这板子被别人蹂躏出了一些奇怪的问题,最后决定通过刷机来一次性解决所有疑难杂症。

但是上网查到的一些资料,有的版本很老,有的写的不够详细,所以在这总结一下我刷机的步骤。

总体步骤都是参照一下几个博客进行的:

 http://blog.csdn.net/bxd1314/article/details/47748785 

 http://www.cnblogs.com/frombeijingwithlove/p/4421690.html


2,具体步骤

2.1前期准备

1,首先肯定得有tk1这个板子

2,需要一个ubuntu(我是ubuntu 14 lts虚拟机)系统的电脑当host pc,在操作之前最好确保你的ubuntu主机(或者虚拟机)有足够的存储空间(最好大于5g),以免刷机出现错误

3,tk1板子买的时候送的恢复线

3,随机带的说明书(告诉你恢复线插到tk1的哪里)

2.2下载驱动和固件

需要以下两个包:

Tegra124_Linux_R21.3.0_armhf.tbz2

地址:http://developer.download.nvidia.com/embedded/L4T/r21_Release_v3.0/Tegra124_Linux_R21.3.0_armhf.tbz2

Tegra_Linux_Sample-Root-Filesystem_R21.3.0_armhf.tbz2

地址:http://developer.download.nvidia.com/embedded/L4T/r21_Release_v3.0/Tegra_Linux_Sample-Root-Filesystem_R21.3.0_armhf.tbz2

2.3准备刷机

在一个ubuntu系统的pc上操作上一步两个下载完的包。

把这两个文件放在某一个文件夹里,然后cd进入这个文件夹,解压缩包Tegra124_Linux_R21.3.0_armhf.tbz2

sudo tar --numeric-owner -jxpf Tegra124_Linux_R21.3.0_armhf.tbz2

解压缩完事后,会出现一个linux_for_tegra文件夹。cd进入文件夹,再ls一下,看有一个rootfs文件夹,cd进入这个文件夹,然后把Tegra_Linux_Sample-Root-Filesystem_R21.3.0_armhf.tbz2这个包解压缩在这里面,方法是这个文件夹里运行代码:

sudo tar --numeric-owner -jxpf ../../Tegra_Linux_Sample-Root-Filesystem_R21.3.0_armhf.tbz2
然后返回上一级文件夹,代码:

cd ..
在这个文件夹里执行下列代码,会执行安装脚本,生成真正的system image,准备完毕。

sudo ./apply_binaries.sh
2.4开始刷机

终于要开始刷机了,把随机带的刷机线,大头插到电脑上,小头插到tk1上,也就是耳机口旁边的口,然后按住最右边的force recoverry 按钮别松手,再按一下reset键,板子就重启进入了recovery mode,然后在ubuntu主机上输入:

sudo ./flash.sh -S 8GiB jetson-tk1 mmcblk0p1
这个时候ubuntu上会弹出一个设备,就是tk1了,然后就会进入刷机过程,得等一阵子,最后成功了的话,我记得会出现success字样。

这时重启板子,就发现这板子已经成功被初始化了。

3,问题与解决

 

问题一:拿到这个开发板时,因为装一个图形驱动出现问题,结果连图形界面都消失了,开机只剩下文本模式,还好文本模式能用,在文本模式下执行下列指令,安装NVIDIA的驱动解决这个问题::


cd NVIDIA-INSTALLER

sudo ./installer.sh (密码)

sudo reboot 


问题二:图形界面虽然出现了,但是图形界面下登陆时,又发生死循环,登陆之后不出现桌面,又重复出现登陆界面,而且分辨率也很奇怪,一度以为是分辨率的问题,解决方法,在文本模式下输入代码:

sudo rm -r .Xauthority*


问题三:图形界面出现了,登陆也进去了,但是!ubuntu 系统的侧栏和任务栏(或状态栏),都消失了...只剩下桌面和桌面上零零散散的几个文件,最后实在不想再弄了,通过刷机解决。

不过问题三有一个小解决方案,就是在桌面上新建一个文件之后,选择用其他软件打开,就可以打开ubuntu系统里的一些软件,如firefox,app center之类的,装一个软件叫nautilus-open-terminal(如果你能找到的话),就可以用右键打开终端了,或许可以用终端来解决问题三,但是我没找到这个插件,所以最终刷机了。

问题四:开始刷机时,所有准备工作都ok了,开始刷机,刷完发现tk1没变化,还那些毛病,一看终端里刷机的过程,竟然出现failed了,最后检查了一下ubuntu虚拟机,发现没有硬盘空间里,估计是解压缩包时候,因为没有空间,没有全部解压缩完,随后换了个更大空间的虚拟机,重复一遍步骤,成功刷机了。


接下来会继续更新在tk1里安装CUDA,安装opencv,用opencv实现光流的具体步骤。


<think>好的,用户现在想查找与NVIDIA相关的SMI工具或信息,特别是关于nvidia-smi工具的信息。之前他们遇到了问题,安装nvidia-cuda-toolkit后导致nvidia-smi无法使用,报错是驱动和库版本不匹配。现在需要针对他们的当前查询提供帮助。 首先,我需要确认用户的需求。他们可能希望了解nvidia-smi的基本功能,如何安装或修复,以及常见问题的解决方法。考虑到之前的错误,用户可能对版本兼容性特别关注。 接下来,我需要整理nvidia-smi的主要功能,包括监控GPU状态、查看温度、内存使用、进程信息等。同时,需要说明如何安装,通常是通过NVIDIA驱动安装的,但用户之前安装cuda-toolkit可能影响了驱动,所以需要强调驱动和CUDA工具包的版本匹配。 然后,常见问题部分必须包括他们遇到的版本不匹配错误,解决方法可能是重新安装驱动或调整版本。此外,其他常见问题如权限问题、工具未找到也需要提及。 用户可能还想知道如何获取更多信息,比如官方文档或命令帮助。需要提供相关链接和命令,比如nvidia-smi -h。 最后,生成的相关问题需要围绕安装、错误解决、监控工具比较和自动化监控展开,这样用户可以进步探索。 需要确保回答结构清晰,分点说明,并引用之前的错误作为参考。同时,使用正确的LaTeX格式,但用户问题中没有数学表达式,可能不需要太多公式,但需遵守系统指令的行内格式要求。 检查是否有遗漏的信息,比如不同Linux发行版的安装方式,或者如何检查版本兼容性。确保所有建议的安全操作,如卸载驱动前的步骤,避免用户系统步出问题。 总结回答的结构:功能、安装方式、常用命令、常见问题及解决、相关信息获取,最后相关问题。这样用户能步步了解并解决问题。</think>关于NVIDIA系统管理接口(nvidia-smi)工具的信息整理如下: ### nvidia-smi核心功能 1. **GPU状态监控**:实时显示显存占用率、GPU利用率、温度、功耗等指标 2. **设备信息查询**:查看GPU型号、驱动版本、CUDA版本、PCIe接口信息 3. **进程管理**:显示占用GPU资源的进程及其显存使用情况 4. **配置调整**:支持修改GPU运行模式(持久化模式)、ECC内存设置等 ### 二、安装与调用 1. **安装方式**:随NVIDIA显卡驱动自动安装,无需单独安装 ```bash # 验证安装(需先安装NVIDIA驱动) nvidia-smi ``` 2. **典型报错处理**(您遇到的版本冲突问题): - 现象:`Failed to initialize NVML: Driver/library version mismatch` - 解决方法: ```bash sudo apt purge nvidia-* sudo apt install nvidia-driver-535 # 指定与CUDA兼容的驱动版本 sudo reboot ``` 建议通过[官方CUDA工具包兼容性表](https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html)确认版本对应关系[^1] ### 三、常用命令参数 | 参数 | 功能描述 | |------|----------| | `-q` | 显示完整设备信息 | | `-l <秒数>` | 定时刷新监控数据 | | `-i <GPU_ID>` | 指定查看特定GPU | | `--query-gpu=...` | 自定义查询字段 | ### 四、典型应用场景 1. 深度学习训练时监控显存使用 2. 排查GPU资源占用异常 3. 验证驱动安装是否成功 4. 服务器集群资源调度参考 ### 五、相关信息获取 1. 官方文档:https://developer.nvidia.com/nvidia-system-management-interface 2. 本地帮助: ```bash nvidia-smi -h man nvidia-smi ```
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值