最优化理论是应用数学的一个分支,该理论研究在约束条件下某个函数的最小值或最大值.这个领域的诞生可以追溯到高斯年轻时所解决的一个天文学问题.后来随着物理学,特别是力学的发展,一些自然现象可被描述为“能量”函数最小化的问题,这是最优化的前身.现在最优化已经朝着研究和应用计算机算法来求解数学问题的方向发展。
如今,这个领域处于许多学科的交叉点,从统计学到动态系统与控制、复杂性理论和算法.它的应用范围非常广泛,包括机器学习、信息检索、工程设计、经济学、金融学和管理学。随着海量数据集的出现,最优化现在被视为数据科学这一新兴领域的重要组成部分。
在过去的20年里,人们对最优化及其应用领域重新产生了兴趣。最令人振奋的发展之一是一类特殊的优化问题——凸优化.凸模型为开发用来求解最优化问题的软件提供了一个可靠且实用的平台。借助于对用户友好的软件包,建模人员现在可以快速开发出非常高效的代码来求解千奇百怪的凸问题.现在,我们可以像求解规模相似的线性方程组一样轻松地解决凸问题。扩大可处理问题的范围反过来又使我们能够开发出更有效的方法来求解困难的非凸问题。
与此同时,数值线性代数方向也有了很大发展.在20世纪80年代后期对计算机算法进行了一系列开创性工作之后,用户友好型平台如Matlab、R以及最近的Python相继出现,这允许多代用户快速开发代码来求解数值问题。如今,对于求解具有数千个变量和方程的数值线性系统的实际算法和技术的能力,只有少数专家还心存疑虑,其他人则认为求解方案及其底层算法是理所当然的。
优化,更确切地说是凸优化,目前也处于类似阶段.基于这些原因,大多数工科、经济学和理科专业的学生可能会发现,在他们的职业生涯中,有能力识别、简化、建模和解决自己工作中出现的问题非常重要,而实际上只有极少数学生需要研究数值算法的细节。考虑到这个问题,我们将“最优化模型:线性代数模型、凸优化模型及应用”作为本书的标题,以突出强调以下事实:本书专注于“理解”实际问题的性质并将其建模为可求解的优化范例——这是一门“艺术”(通常是通过发现问题中的“隐藏凸性”结构),而不是聚焦于数量众多的特定数值优化算法的技术细节。为了完整起见,本书提供了两个相关章节,一章介绍基本的线性代数算法,而另一章则广泛地讨论所选取的优化算法。不过,跳过这些章节并不会影响对本书其他部分的理解。
编辑推荐
本书强调对特定算法技术的实际理解,侧重于介绍最优化领域中功能强大且便于计算的凸优化技术。相关专业的学生和从业人员将从本书中学习如何识别、简化、建模以及求解相关最优化问题,并将其中暗含的基本原理应用到自己的项目中。
本书对线性代数做了清晰而完整的介绍。通过引入相关的实际案例,以易于理解且形象的方式给读者展示核心的数学概念,并帮助其领会问题的实际意义。本书在易理解性和数学严谨性之间取得了一种恰当的平衡,使读者能够快速通晓书中内容,而不会淹没在复杂的数学推导中。
书中每章结尾提供大量习题,以及来自工程、数据科学、经济、金融和管理等不同领域的各种案例。本书是学习最优化理论不可多得的入门教材。
内容简介
全书共分为三部分:第一部分(第 2~7 章)主要介绍线性代数相关知识,包括向量、矩阵、对称矩阵、奇异值分解、线性方程组、最小二乘和矩阵算法等;第二部分(第 8~12 章)主要介绍凸优化相关知识,包括凸性、线性规划、二次规划、几何规划、二阶锥规划、鲁棒优化模型、半定模型等;第三部分(第 13~16 章)主要介绍相关应用,包括监督学习、最小二乘预测、无监督学习、最优投资组合、控制问题、工程设计等.
作者简介
Giuseppe C.Calafiore 是意大利都灵理工大学自动化与信息学院副教授,意大利国家研究委员会电子、计算机和电信工程研究所研究员。
Laurent El Ghaoui 是美国加州大学伯克利分校电气工程和计算机科学系以及工业工程和运筹学系的教授。
目录
上拉下滑查看目录 ↓
译者序
前言
第 1 章 绪论 1
1.1 启发性的例子 1
1.2 优化问题 4
1.3 优化问题的重要类型 9
1.4 发展历史 13
第一部分 线性代数模型
第 2 章 向量和函数 18
2.1 向量的基本概念 18
2.2 范数与内积 25
2.3 子空间上的投影 35
2.4 函数 41