有源滤波器与振荡器:二阶滤波器响应解析
1. 双二次滤波器函数
二阶滤波器的传递函数可以用两个二次多项式的比值来描述,其表达式如下:
[H(j\omega) = \frac{V_{out}}{V_{in}} = \frac{A(\omega_0^2 + j\omega\omega_0/Q + j\omega/\omega_1)}{(1 + j\omega/\omega_3)(1 + j\omega/\omega_4)}]
在分子和分母中,二次多项式都被表示为两个二项式的乘积。对于二阶或更高阶的滤波器,极点和零点通常是复数。在正弦稳态下,使用 s 平面表示法(其中 (s = j\omega))能更方便地描述具有复极点和零点的传递函数。s 平面由一组实轴和虚轴定义,用于绘制系统中每个极点和零点的实部和虚部。在 s 平面中,滤波器的正弦驱动频率等同于虚轴变量 (s = j\omega)。
若用复数 (s_1, \cdots, s_4) 来描述极点和零点,双二次传递函数可写成:
[H(s)=A\frac{(1 + s/\omega_1)(1 + s/\omega_2)}{(1 + s/\omega_3)(1 + s/\omega_4)} = A\frac{s^2 + s(\omega_1 + \omega_2) + \omega_1\omega_2}{s^2 + s(\omega_3 + \omega_4) + \omega_3\omega_4}]
该式也可表示为一般形式:
[H(s)=\frac{a_2s^2 + a_1s + a_0}{b_2s^2 + b_1s + b_0}]
其中系数 (a_0, \cdots, a_2) 和 (b_0, \