心流搭叩
心流搭叩是心流旗下的异步AI智能体,是一整套由AI驱动、具备独立运行环境、帮助开发者更轻松高效完成创作的一站式研发工具。
它聚焦开发场景,支持通过自然语言,端到端完成从创意到编码、测试、部署等研发任务,具有独立的云端隔离沙箱环境,保障代码安全,并且可异步批量并行运行任务,提升整体研发效率。
核心功能
异步工作:下发任务给到心流搭叩,它会自主处理任务,哪怕关闭页面,它也会自动完成任务,等待你的验收。
安全环境:你下发的每一个任务,都将分配单独一台云端电脑帮你处理,与你的本地电脑完全隔离。
模板管理:为不同业务场景定制任务模板,让你不需要动脑提交任务流程,并实现成功经验的快速复刻。
开放集成:支持集成GitHub及第三方MCPServer,灵活解决用户个性化诉求。正如它的slogan所言,希望以“心流搭叩”为工具,让人人都能成为Ai时代的创造者。
快速开始
- 登录搭叩平台:搭叩
2.选择某个快速开始的示例,然后发起任务(备注:需要先激活账号)
3.查看搭叩任务运行过程
4.查看搭叩生成的产品官网
5.生成官网地址:Vite + React + TS
使用指南
会话管理
委派任务
查看近期会话
查看全部历史会话
- 对会话的操作包含:
- 收藏:对于需要重点关注或者后续需要查看的会话,可进行收藏,方便快速检索
- 重命名:目前会话名称由AI进行总结,用户可自定义重命名会话名称
知识管理
创建知识
- 访问路径:访问搭叩——知识管理——新建知识
2.填写知识内容,并提交知识
- 知识名称:用于标识该知识,方便后续检索
- 具体内容:支持Markdown格式
3.知识检索触发器:告诉搭叩在什么场景下使用该知识
- 创建知识后,系统会自动生成当前知识的检索触发器,后续搭叩在处理相关任务时就会使用该知识
- 若对于AI生成的检索触发器不满意,用户也可手动修改
查看知识
- 我启用的:
- 搭叩在执行任务过程中只会获取用户启用的知识,目前用户创建的知识会默认启用
- 对于部分不再需要使用的知识,用户也可以直接进行禁用
- 我创建的:展示当前用户创建的所有知识,包含已经启用的和被禁用的知识
使用知识
- 在搭叩处理任务过程中,会根据用户意图自动获取相关的知识
剧本管理
创建剧本
1.访问路径:访问搭叩——剧本管理——新建剧本
2.添加剧本内容,并创建剧本
- 剧本名称:剧本的标识
- 剧本内容:如处理某类任务的标准SOP流程,支持 Markdown 格式
查看剧本
- 我创建的:展示用户创建的所有剧本
- 我收藏的
- 展示用户收藏的所有剧本,
- 收藏的剧本来源可以是用户自己创建的,也可以是剧本广场中其他用户分享的剧本
剧本广场
- 剧本广场展示了所有公开的剧本,用户可根据自己的需求收藏所需要使用的剧本
- 内容来源:
- 搭叩平台提供的示范剧本
- 其他用户分享的公开剧本(暂未支持)
使用剧本
- 在用户发起会话时,可选择某个剧本给到搭叩进行参考
- 目前用户可选择:自己创建的或者已经收藏的剧本
代码仓库
导入Github 仓库
- 访问路径:访问搭叩——代码仓库——导入Github 仓库
2.在Github页面选择需要导入/授权的Github仓库
3.在确认授权之后,会跳转Github Applications 页面,用户可在当前页面取消对搭叩的授权
查看导入的Github仓库
- 我启用的:
- 在给搭叩提交任务时,仅可选择当前启用的代码仓库
- 用户导入Github仓库后,导入的仓库默认都启用
- 对于不需要使用的代码仓库,用户可直接禁用仓库
- 我授权的:
- 展示用户导入(授权)的所有Github 仓库
- 用户可在当前页面重新启用此前被禁用的代码仓库
使用代码仓库
- 用户在给搭叩提交任务时,可选择当前任务所需使用的代码仓库
- 搭叩在执行任务过程中会根据用户的诉求自动下载对应的仓库代码并进行开发修改
MCP Server
启用 MCP Server
1.访问路径:访问搭叩——MCP Server——MCP Server 市场
2.根据任务需要,启用所需使用的 MCP 工具
查看启用的 MCP Server
- 我启用的:展示了当前用户启用的所有MCP Server
使用MCP Server
Prompt设计
Prompt 定义了用户与 AI 交互的具体方式和上下文,它是连接用户意图与 AI 功能的重要桥梁,通过合理的设计和应用,可以显著提升 AI Agent 的表现效果和用户体验。
搭叩作为一个异步 Agent 产品,无论是生成代码、撰写文章还是其他任务,恰当的 Prompt 都是成功的关键之一。
在进行Prompt设计时,一些实践建议如下:
结构化提示词
- 将提示词明确区分为不同的模块,例如:用户指令、上下文、约束、输出规范、示例等
- 使用清晰的分隔符(如XML标签、或简单的###)来划分不同的区域
简洁表达,明确指示
-
提示应当简洁、清晰,不要模棱两可,越直接越好
-
不要提供不必要的信息,否则会分散注意力
明确目标/输出
- 提供具体细节
- 明确说明你想要什么和不想要什么
使用指令而非约束
- 指令:提供了所需格式、风格或内容的明确指示。它指导模型应该做什么或产生什么。
- 约束:是一组限制或边界条件,限制了模型不应做或避免的事情。
- 越来越多的研究表明,在提示中专注于正面指令比过度依赖限制更为有效。与人类更喜欢正面指令而非不能做什么的列表相一致。告诉模型该做什么,而不是不该做什么
提供示例
- 少样本提示:分类任务时确保在示例中混合可能的响应类别,避免过拟合
- 一个好的经验法则是从6个少样本示例开始测试准确性
不断实验并迭代优化
- Prompt工程是一个迭代过程
- 记录各种提示尝试,可以随着时间的推移学习哪些做得好,哪些做得不好
- 不断实验,直到获得所需输出
其他
- Transformer 架构模型会特别关注提示的开头和结尾
- 重要的事情可以强调几遍
- 如果会话很长,则提醒模型注意关键点
- 善用前缀:注意/重要等,用于标记需要LLM重点关注的内容
结语
更多使用教程和精彩案例,以及想体验更多强大的AI工具来帮助你提升工作效率,创建你的专属助手可以访问心流开放平台。