opencv 特征框架 2D Features Framework

本文详细介绍OpenCV中多种特征检测与描述算法,包括AGAST、AKAZE、BRISK、FAST、GFTT、KAZE、MSER、ORB等,并介绍了关键点匹配器如BFMatcher和FlannBasedMatcher。此外,还涵盖了关键点和匹配点的绘制功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Modules

  
 Feature Detection and Description  特征检测与描述https://docs.opencv.org/3.4/d5/d51/group__features2d__main.html
 cv::AgastFeatureDetector 
  Wrapping class for feature detection using the AGAST method. : More...
  
 class  cv::AKAZE
  Class implementing the AKAZE keypoint detector and descriptor extractor, described in [5]More...
  
 class  cv::BRISK
  Class implementing the BRISK keypoint detector and descriptor extractor, described in [117] . More...
  
 class  cv::FastFeatureDetector
  Wrapping class for feature detection using the FAST method. : More...
  
 class  cv::GFTTDetector
  Wrapping class for feature detection using the goodFeaturesToTrack function. : More...
  
 class  cv::KAZE
  Class implementing the KAZE keypoint detector and descriptor extractor, described in [6] . More...
  
 class  cv::MSER
  Maximally stable extremal region extractor. More...
  
 class  cv::ORB
  Class implementing the ORB (oriented BRIEF) keypoint detector and descriptor extractor. More...
  
 class  cv::SimpleBlobDetector
  Class for extracting blobs from an image. : More...
   
 Descriptor Matchers  描述符匹配器https://docs.opencv.org/3.4/d8/d9b/group__features2d__match.html
  
 cv::BFMatcher
  Brute-force descriptor matcher. More...
  
 class  cv::DescriptorMatcher
  Abstract base class for matching keypoint descriptors. More...
  
 class  cv::FlannBasedMatcher
  Flann-based descriptor matcher. More...
 Drawing Function of Keypoints and Matches  关键点和匹配点的绘制功能https://docs.opencv.org/3.4/d4/d5d/group__features2d__draw.html
   
 Object Categorization 对象分类https://docs.opencv.org/3.4/de/d24/group__features2d__category.html

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值