
CRT
文章平均质量分 53
Icefox_zhx
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
codevs3990 中国余数定理 2(中国剩余定理)
中国剩余定理(CRT)板子题。中国剩余定理就是用来求解同余方程组⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪x≡c1(modm1)x≡c2(modm2)x≡c3(modm3)...x≡ck(modmk)\left\{ \begin{array}{c} x\equiv c_1\pmod {m_1}\\ x\equiv c_2\pmod {m_2} \\ x\equiv c_3\pmod {m_3}\\ ...原创 2018-04-04 12:21:08 · 236 阅读 · 0 评论 -
poj2891 Strange Way to Express Integers(扩展CRT)
求解同余方程组 ⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪x≡c1(modm1)x≡c2(modm2)x≡c3(modm3)...x≡ck(modmk){x≡c1(modm1)x≡c2(modm2)x≡c3(modm3)...x≡ck(modmk)\left\{ \begin{array}{c} x\equiv c_1\pmod {m_1}\\ x\equiv c_2\pmod {m_2} \\ x\...原创 2018-04-04 13:10:08 · 263 阅读 · 0 评论 -
bzoj2142 礼物(扩展Lucas+CRT)
给定n个物品,分给m个人,每个人拿到wi个礼物,问方案数mod P P不一定为质数首先我们把剩下的礼物也分给一个人 答案明显不变 w[++m]=n-w1-w2-…-wm 那么显然答案就是Cw1nCw2n−w1⋯Cwmn−w1−...−wm−1C_n^{w_1}C_{n-w_1}^{w_2}\cdots C_{n-w_1-...-w_{m-1}}^{w_m},也就是n!w1!w2!⋯wm!%P\fr原创 2018-04-04 15:44:35 · 444 阅读 · 0 评论 -
bzoj1951 [Sdoi2010]古代猪文(Lucas定理+CRT+逆元)
题目就是求 G∑k|nCkn%P,P=999911659G^{\sum\limits_{k|n}C_n^k}\%P,P=999911659 根据欧拉定理,我们就是要求∑k|nCkn%ϕ(p)\sum\limits_{k|n}C_n^k\%\phi(p) 因为P是个素数,所以phi(p)=p−1phi(p)=p-1 n很大,所以计算这个组合数求模要用Lucas定理来算Lucas定理:porta原创 2018-04-05 22:36:52 · 300 阅读 · 0 评论 -
bzoj3738 [Ontak2013]Kapitał(扩展Lucas+CRT+欧拉函数)
把末尾0去掉,相当于先除了个10x10^x,x=min(num[2],num[5])x=min(num[2],num[5])。 然后就是普通的扩展Lucas+CRT了。详见:portal以后我要全开ll【再见】,心态爆炸。我大概就是个辣鸡吧qaq原创 2018-04-06 12:22:10 · 339 阅读 · 0 评论 -
bzoj2219 数论之神(CRT+BSGS+数论)
嗯,在三天之后,我终于把这题A了qaq 太神了。orz po姐题解:portal(配合评论食用效果更佳哟)原创 2018-04-07 13:55:07 · 347 阅读 · 0 评论 -
bzoj3782 上学路线(dp+容斥+组合数学+Lucas+CRT)
把终点也视为一个坏点的话,f[i]表示到达坏点i且不经过其他坏点的方案数。直接计算f[i]比较困难,考虑容斥。 可以通过组合数学方便的得到从一个点到另一个点的总方案数。那么我们可以再枚举经过的第一个坏点来减去不合法的方案。 这里算组合数需要Lucas定理,1019663265=3*5*6793*10007不是质数,但好在次数都是1,我们对每一个质因子算一下再CRT合并起来即可。 复杂度O(n...原创 2018-06-01 11:45:51 · 374 阅读 · 0 评论