Huffman编码示例代码

本文介绍了一种数据压缩算法——Huffman编码,并通过示例代码详细展示了如何构建Huffman树及其编码过程。该算法根据字符出现的频率构建最优前缀编码树,从而实现高效的数据压缩。
// Huffman编码示例代码

struct HuffmanNode
{
	int nFrequency; // 频率
	struct HuffmanNode* pParent; // 父节点
	struct HuffmanNode* pLeft; // 左节点
	struct HuffmanNode* pRight; // 右节点
};

// pData, 树数据,其中叶子数据已经准备好
// nLen 数据 个数, pData需要2*nLen-1, 其中后面nLen-1个用于存储树中间节点
// 返回后, 根节点是 &pData[2*nLen-2]
void HuffmanTree(struct HuffmanNode* pData, int nLen)
{
	for(int pos = nLen; pos<2*nLen-1; ++pos)
	{
		struct HuffmanNode* pMin1 = 0;
		struct HuffmanNode* pMin2 = 0;

		// 第一个最小值
		for(int i=0; i<pos; ++i)
		{
			if(pData[i].pParent != 0)
			{
				// 已经处理过了
				continue;
			}

			if(pMin1 == 0 || pMin1->nFrequency > pData[i].nFrequency)
			{
				pMin1 = &pData[i];
			}
		}

		pMin1->pParent = &pData[pos];
		pData[pos].pLeft = pMin1; // 频率小在左枝

		// 第二个最小值
		for(int j=0; j<pos; ++j)
		{
			if(pData[j].pParent != 0)
			{
				// 已经处理过了
				continue;
			}

			if(pMin2 == 0 || pMin2->nFrequency > pData[j].nFrequency)
			{
				pMin2 = &pData[j];
			}
		}

		pMin2->pParent = &pData[pos];
		pData[pos].pRight = pMin2;

		// 节点频率
		pData[pos].nFrequency = pMin1->nFrequency + pMin2->nFrequency;
	}
}

// 根据编码树获取编码
// 返回: 编码位数和编码数字
int GetHuffmanCode(struct HuffmanNode* pNode, int& code)
{
	code = 0;
	int nBits = 0;
	
	// 特殊处理
	if(pNode->pParent == 0)
	{
		nBits = 1;
		return nBits;
	}

	struct HuffmanNode* pParent = pNode->pParent;
	while(pNode->pParent != 0)
	{
		if(pNode == pNode->pParent->pLeft)
		{
			// 左枝(频率小的一枝)编码为1 
			code |= (1<<nBits);
		}
		++nBits;

		pNode = pNode->pParent;
	}

	return nBits;
}

// 输出为二进制
void printf2(int n, int bits)
{
	for(int i=bits-1; i>=0; --i)
	{
		printf("%c", (n&(1<<i))?'1':'0');
	}
}

int main()
{
	char ch[6] = {'A', 'B', 'C', 'D', 'E', 'F'};
	struct HuffmanNode tree[6+5] = 
	{
		{12},
		{34},
		{23},
		{9},
		{10},
		{26},
	};

	HuffmanTree(tree, 6);

	// 输出编码
	for(int i=0; i<6; i++)
	{
		int code;
		int bits = GetHuffmanCode(&tree[i], code);

		printf("%c [%d] : ", ch[i], tree[i].nFrequency);
		printf2(code, bits);
		printf("\n");

	}

	return 0;
}

/*
输出:
A [12] : 011
B [34] : 00
C [23] : 11
D [9] : 0101
E [10] : 0100
F [26] : 10
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值