// Huffman编码示例代码
struct HuffmanNode
{
int nFrequency; // 频率
struct HuffmanNode* pParent; // 父节点
struct HuffmanNode* pLeft; // 左节点
struct HuffmanNode* pRight; // 右节点
};
// pData, 树数据,其中叶子数据已经准备好
// nLen 数据 个数, pData需要2*nLen-1, 其中后面nLen-1个用于存储树中间节点
// 返回后, 根节点是 &pData[2*nLen-2]
void HuffmanTree(struct HuffmanNode* pData, int nLen)
{
for(int pos = nLen; pos<2*nLen-1; ++pos)
{
struct HuffmanNode* pMin1 = 0;
struct HuffmanNode* pMin2 = 0;
// 第一个最小值
for(int i=0; i<pos; ++i)
{
if(pData[i].pParent != 0)
{
// 已经处理过了
continue;
}
if(pMin1 == 0 || pMin1->nFrequency > pData[i].nFrequency)
{
pMin1 = &pData[i];
}
}
pMin1->pParent = &pData[pos];
pData[pos].pLeft = pMin1; // 频率小在左枝
// 第二个最小值
for(int j=0; j<pos; ++j)
{
if(pData[j].pParent != 0)
{
// 已经处理过了
continue;
}
if(pMin2 == 0 || pMin2->nFrequency > pData[j].nFrequency)
{
pMin2 = &pData[j];
}
}
pMin2->pParent = &pData[pos];
pData[pos].pRight = pMin2;
// 节点频率
pData[pos].nFrequency = pMin1->nFrequency + pMin2->nFrequency;
}
}
// 根据编码树获取编码
// 返回: 编码位数和编码数字
int GetHuffmanCode(struct HuffmanNode* pNode, int& code)
{
code = 0;
int nBits = 0;
// 特殊处理
if(pNode->pParent == 0)
{
nBits = 1;
return nBits;
}
struct HuffmanNode* pParent = pNode->pParent;
while(pNode->pParent != 0)
{
if(pNode == pNode->pParent->pLeft)
{
// 左枝(频率小的一枝)编码为1
code |= (1<<nBits);
}
++nBits;
pNode = pNode->pParent;
}
return nBits;
}
// 输出为二进制
void printf2(int n, int bits)
{
for(int i=bits-1; i>=0; --i)
{
printf("%c", (n&(1<<i))?'1':'0');
}
}
int main()
{
char ch[6] = {'A', 'B', 'C', 'D', 'E', 'F'};
struct HuffmanNode tree[6+5] =
{
{12},
{34},
{23},
{9},
{10},
{26},
};
HuffmanTree(tree, 6);
// 输出编码
for(int i=0; i<6; i++)
{
int code;
int bits = GetHuffmanCode(&tree[i], code);
printf("%c [%d] : ", ch[i], tree[i].nFrequency);
printf2(code, bits);
printf("\n");
}
return 0;
}
/*
输出:
A [12] : 011
B [34] : 00
C [23] : 11
D [9] : 0101
E [10] : 0100
F [26] : 10
*/
Huffman编码示例代码
最新推荐文章于 2022-04-24 13:16:41 发布
