自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 脱发因素深度解析与科学预测:从数据视角破解头发健康密码

本文基于999个样本的脱发影响因素数据集,利用Python进行数据分析和机器学习建模,揭示脱发核心诱因并构建预测模型。研究显示,遗传因素(58.9%)、激素变化(46.2%)和压力水平(高压力人群脱发风险达72.3%)是主要影响因素。通过随机森林模型分析发现,年龄增长与脱发风险呈非线性相关,30-50岁为高风险期。模型预测准确率达87.6%,为个性化防脱方案提供数据支持。研究建议通过压力管理(降低31%风险)和营养补充(如补铁可减少22%脱发概率)进行科学干预。

2025-06-26 16:17:46 1202

原创 Untitled1

在医疗健康领域,心脏病作为威胁人类生命健康的重要疾病,对其进行数据分析与分类预测,能够帮助医生更精准地诊断病情,为患者制定个性化的治疗方案。本文将基于 Python,通过对心脏病相关数据的探索性分析和多种分类模型的应用,深入挖掘数据背后的信息,为心脏病的研究和诊断提供有力支持。一、数据准备与初步分析​首先,我们导入必要的 Python 库,这些库涵盖了数据处理、可视化、模型构建与评估等多个环节。接着,读取心脏病数据集,通过箱线图对关键特征,如年龄、性别、心率、血压、血糖等进行初步分析。

2025-06-20 15:44:53 1199

原创 Untitled

本文基于2021年电商订单数据,通过时间维度分析用户消费行为。数据集包含104,557条订单记录,经过预处理后筛选未退款订单作为分析对象。研究从月度消费趋势和每日消费时段两个维度展开,利用可视化方法揭示消费规律。分析发现付款金额存在负值(退款记录),通过绝对值转换统一数据口径,为后续消费行为洞察和运营策略优化提供数据支持。

2025-06-13 15:49:23 1216

原创 抑郁症患者数据分析

以上数据分析揭示:抑郁症患者以女性、中青年为主,症状呈现 “情绪 - 生理 - 社会功能” 多维交织的特点。通过代码,我们不仅能量化问题,更能定位干预重点 —— 如为青少年开发家庭支持模型,为中年人设计压力筛查工具,为老年人建立跨科室诊疗路径。

2025-06-06 16:57:15 263

原创 我的Python学习之旅

其次,Python拥有丰富的内置库和第三方库,涵盖了数学、科学计算、数据分析、机器学习、Web开发等多个领域,这使得Python在各个领域都有广泛的应用。最后,Python社区活跃,资源丰富,无论是遇到问题寻求帮助,还是想要深入学习进阶内容,都能找到相应的资源和支持。同时,还可以安装一些Python的第三方库,如NumPy、Pandas等,以便在后续的学习中使用。这些高级特性虽然相对复杂,但掌握它们后,自身能力将得到质的飞跃,对于Python的理解也会更上一层,也能更好地理解Python的底层机制和原理。

2024-12-20 09:29:58 360

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除