DolphinScheduler停止工作流实例删除不了,造成master空指针

文章讨论了如何在数据库中创建一个SQL触发器,用于在t_ds_process_instance表的状态变为准备停止或停止时,自动将状态更新到t_ds_task_instance表,并设置为失败状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

状态描述

1正在执行 4准备停止 5停止 6失败 7成功

解决编写触发器

元数据表解析

t_ds_process_instance 任务实列

t_ds_task_instance 工作流实例

t_ds_task_instance 的 process_instance_id 字段 ,和 t_ds_process_instance id 是关联的
DELIMITER //

CREATE TRIGGER update_process_state BEFORE UPDATE ON t_ds_process_instance
FOR EACH ROW
BEGIN
    IF OLD.state = 4 OR OLD.state = 5 THEN
        SET NEW.state = 6;

        UPDATE t_ds_task_instance
        SET state = 6
        WHERE process_instance_id = NEW.id;
    END IF;
END //

DELIMITER ;
<think>首先,用户的问题是关于DolphinScheduler工作流与任务的关系。从用户的消息中,他们提供了引用内容,其中提到:-引用[1]:描述了DolphinScheduler工作流实例生命周期,工作流运行在Master节点,任务节点在Worker节点上运行。-引用[2]:介绍了DolphinScheduler作为分布式可视化工作流任务调度工具,支持DAG(有向无环图)来组装任务,可以监控任务状态,支持重试等操作。尽管提供了这些引用,用户特别说明这些引用仅供参考,我应该基于他们上一次的问题和我的回答来回复。用户上一次的问题是:"如果使用表中的id作为分桶键,但是经过hash后不是会存在很多桶吗",而我回复了一个关于StarRocks分桶机制的详细分析。现在用户的新问题是:"我想了解DolphinScheduler工作流与任务的关系"。所以,我需要完全转向DolphinScheduler的主题,并参考提供的引用来构建回答。关键点:回答需要结构化清晰,帮助用户逐步解决问题。我会参考用户提供的引用内容来确保真实可靠,但用户提到这些引用不是真实需求,所以我应该基于通用知识来回答。回顾系统指令:-所有行内数学表达式必须使用$...$格式。-独立公式单独成段,使用$$...$$。-使用中文回答。-生成相关问题。-在引用段落末尾自然地添加引用标识。-回答结构清晰。结构化回答:1.**介绍工作流和任务的概念**:基于引用,工作流是DAG(有向无环图),任务是在工作流中执行的具体操作。2.**工作流与任务的关系**:-工作流定义任务的执行顺序和依赖关系。-任务可以是各种类型,如Shell、Python、Flink、Spark等,作为工作流的节点。-工作流运行在Master节点,任务运行在Worker节点。3.**生命周期**:从引用[1],工作流实例有生命周期状态(例如运行、暂停、恢复),任务也有状态管理(如重试、失败恢复)。4.**架构分析**:DolphinScheduler的架构包括Master节点(管理工作流)和Worker节点(执行任务)。引用提到了去中心化设计、HA支持等。引用标识:在引用原文后添加[^1]或[^2]。引用[1]是关于生命周期的,引用[2]是关于部署和特性的。最后,生成相关问题。确保语言是中文。逐步回答:-第一步:解释什么是工作流:DAG形式的任务依赖关系。-第二步:解释什么是任务:工作流中的具体执行单元。-第三步:关系:工作流组织任务;任务执行在Worker;Master监控状态。-第四步:特性引用:如可视化DAG、多种任务类型、状态监控等。相关问题生成:基于内容,如工作流调度策略、任务优化、故障处理等。完整回答大纲:1.**核心概念**:定义工作流和任务。2.**关系架构**:-工作流管理任务的依赖和调度。-任务节点在DAG中定义。-执行过程:工作流Master上运行,任务在Worker上执行。3.**关键特性**:可视化编辑、状态监控、重试机制等,引用[^2]。4.**架构优势**:去中心化、高可靠性等。相关问题:如:1.DolphinScheduler如何实现任务的并行执行?2.如何处理工作流的故障恢复?3.DolphinScheduler支持的任务类型有哪些扩展方式?</think> ### DolphinScheduler 工作流与任务的关系架构分析 DolphinScheduler 是一个开源的分布式工作流任务调度系统,旨在解决复杂的大数据任务依赖管理问题。其核心模型基于 DAG(Directed Acyclic Graph,有向无环图),将工作流作为任务的编排框架,而任务作为工作流中的最小执行单元。下面我将逐步拆解这种关系,确保分析结构清晰、逻辑完整。基于 DolphinScheduler 的官方设计和公开文档[^2],我会引用关键特性来支撑说明。 #### 1. **基本概念:工作流与任务定义** - **工作流 (Workflow)**:工作流DolphinScheduler 的核心抽象,代表一组任务的逻辑组合。它以 DAG 形式呈现,定义了任务的执行顺序和依赖关系。例如,一个数据 ETL 工作流可能包括多个任务节点:数据提取(Shell 任务)、转换(SQL 任务)和加载(Spark 任务)。工作流支持可视化拖拽编辑,简化了复杂流程的构建[^2]。 - **任务 (Task)**:任务是工作流中的具体执行单元,代表一个可执行的作业。DolphinScheduler 支持多种任务类型,如: - Shell 任务:运行命令行脚本。 - Python 任务:执行 Python 代码。 - 大数据任务:如 Flink、Spark 或 MR(MapReduce)。 - SQL 任务:操作数据库。 每个任务作为工作流 DAG 中的一个节点存在,可以被配置参数(例如输入路径、超时时间),并在运行时触发[^2]。 二者的关系本质上是一种 **容器与内容** 的关系:工作流作为容器,组织和调度任务;任务作为内容,执行具体计算逻辑。任务依赖关系(如顺序执行或并行)在工作流中定义,例如,任务 A 完成后再触发任务 B。 #### 2. **工作流与任务的执行架构** DolphinScheduler 的分布式架构确保工作流和任务高效协作,具体分为三层: - **工作流层**:工作流运行在 Master 节点上(也称为 API Server)。Master 负责任务调度、状态监控和依赖管理。例如,Master 根据 DAG 定义生成工作流实例,追踪其生命周期状态(如待运行、运行中、暂停或失败)。这包括支持高级操作:工作流的定时触发、手动暂停/恢复、或指定节点重启失败任务[^1]。 - **任务层**:任务实际运行在 Worker 节点上。Worker 节点通过任务队列从 Master 接收执行指令。例如,一个 Shell 任务被分配到 Worker 后,会在资源隔离环境下运行。 - **协调机制**:Master 和 Worker 间通过消息队列(如 RabbitMQ)或 HTTP 通信。Worker 节点执行任务后,将状态(成功、失败)反馈给 MasterMaster 据此更新工作流实例状态,并决策后续动作(如自动重试或告警)。 **关键关系特性**: - **依赖驱动**:工作流的 DAG 结构决定了任务并行度。例如,在理想状态下,无依赖的任务可并行执行,提升效率。DolphinScheduler 通过工作流模型实现了任务的局部性优化,减少数据传输开销[^2]。 - **状态管理**:任务状态直接影响工作流状态。任务失败时,工作流支持 **弹性恢复机制**:用户可选择从失败节点重启,避免全局重跑(部分引用[^1])。 - **去中心化设计**:工作流和任务解耦,确保高可靠性。即使部分 Worker 节点故障,Master 节点可通过其他 Worker 继续执行任务,避免了单点故障。引用中提到:“原生 HA 任务队列支持,提供过载容错能力”[^2]。 **执行流程图示例**(伪代码表示): ``` 1. Master节点启动工作流实例[^1] → 2. 解析DAG依赖 → 3. 推送任务到Worker队列 → 4. Worker执行任务 → 5. 状态反馈至Master → 6. Master更新工作流状态 ``` #### 3. **核心优势:DolphinScheduler 的关系优化** - **可视化控制**:工作流可图形化定义任务依赖,用户无需代码即可管理复杂流程(如设置全局参数)。任务配置则通过界面完成,例如重试次数(默认 3 次)或超时阈值[^2]。 - **资源高效性**:工作流作为调度单位,Master 根据集群资源分配任务到 Worker。这避免了“桶溢出”问题(如在用户上一个问题中提到的 StarRocks 分桶过多导致的元数据膨胀)。相反,DolphinScheduler工作流隔离任务资源,提升稳定性。 - **可扩展性**:支持多租户(每个租户有独立工作流空间)和每日 10 万级任务调度[^2]。任务类型易于扩展,例如添加自定义任务插件。 - **监控与维护**:工作流提供统一的状态视图(如运行时间、错误日志),任务状态可追溯,支持实时报警。例如,任务失败时自动触发工作流暂停策略[^1]。 #### 4. **实际应用场景** - **大数据处理**:一个工作流包含多个顺序任务:数据清洗(Shell 任务)、Spark 计算和结果存储(SQL 任务)。 - **流式处理**:工作流周期性调度 Flink 任务,通过依赖管理实现流水线。 - **优点**:DolphinScheduler 的关系模型简化了 ETL 流程,解决了“数据研发依赖错综复杂,无法监控任务健康状态的问题”[^2]。 ### 总结 DolphinScheduler工作流与任务关系是以 DAG 为骨架的 **依赖驱动** 架构:工作流负责全局编排和状态协调,任务负责细粒度执行。这种分离式设计(Master 管理流程,Worker 执行任务)提供了高可靠性和易维护性,特别适合大规模大数据场景。如果您有更多细节(如特定任务类型实现),我可以进一步细化。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值