偏微分方程数值处理的综合指南
1. 偏微分方程概述
偏微分方程(PDEs)在众多连续物理系统的计算机分析和模拟中处于核心地位,如流体、电磁场和人体等。从计算角度来看,PDEs 可分为初始值问题和边界值问题。
1.1 初始值问题
初始值问题通常描述系统随时间的演化,需要回答以下问题:
- 待随时间推进的因变量有哪些?
- 每个变量的演化方程是什么?通常这些方程是耦合的。
- 每个变量演化方程中出现的最高时间导数是多少?应尽量将其单独置于方程左侧。
- 空间区域边界上的点的时间演化受哪些特殊方程(边界条件)支配?例如,狄利克雷条件指定边界点的值随时间的变化;诺伊曼条件指定边界上的法向梯度值;外向波边界条件则如其名称所示。
1.2 边界值问题
边界值问题旨在找到一个“静态”函数,使其在感兴趣的区域内满足方程,并在区域边界上具有所需的行为。稳定性相对容易实现,但算法的效率,包括计算负载和存储要求,成为主要关注点。这类问题通常可归结为求解大量联立代数方程。
2. 初始值问题的数值处理
2.1 通量守恒初始值问题
许多一维初始值 PDEs 可写成通量守恒方程的形式:$\frac{\partial u}{\partial t} = -\frac{\partial F(u)}{\partial x}$,其中 $u$ 和 $F$ 是向量,$F$ 称为守恒通量。
以一维波动方程 $\frac{\partial^2 u}{\partial t^2} = v^2 \frac{\partial^2 u}{\partial x^2}$