深度学习 取代 传统图像处理算法 ? 不可能!!!

开门见山

计算机视觉的范围非常广泛,主要包含两大领域:传统图像处理算法和深度学习。

  • 传统图像处理算法包含:直方图均衡化、滤波器、边缘检测、像素聚类等。
  • 深度学习包含:自然语言处理、图像分类、目标检测、语义分割等,每一款都是大方向!

本人学习的路线是,传统图像处理算法 >>> BP神经网络 >>> 卷积神经网络 >>> Transformer架构。从基于传统图像算法的车牌识别,到基于深度学习的图像分类和目标检测,学习了很多的知识,也感悟了很多。

硬件资源

  • 传统图像处理算法要求较低,CPU就可以满足绝大多数的算法。
  • 深度学习对于硬件的要求极高,尤其是跑大量数据集时,没有优质的GPU是不会出成绩的,除非你拥有大量的时间来完成实验。顶尖大学实验室和大厂合作,学校出人,大厂出设备,互赢互利。关于论文的发表,举一个通俗的例子,张三用40W的显卡跑COCO数据集需要半天,李四用2W的显卡跑COCO数据集需要大半个月,而且SCI的评审人一般都会侧重于权威数据集的实验结果,你认为谁更容易出成绩?

精度和领域

  • 传统图像算法在一些工程领域的精度还是较高的,并且鲁棒性很强,但是领域受限。
  • 深度学习的精度取决于数据集和网络,高质量的数据集和顶尖的网络训练出来的模型,精度非常高,鲁棒性也很强,应用场景主要取决于数据集的领域,可谓非常之广泛。

发展前景

两者缺一不可!传统图像处理算法不可能被彻底取代!比如,计算机视觉方向的论文、落地的工业视觉项目,一般都会结合传统图像处理算法和深度学习。除此之外,部分相机内部的图像前处理(清除噪声、自动曝光、畸变修复)等,以及图像后处理(亮度、对比度、均衡化)都需要传统图像处理算法。

所以,传统图像处理算法的发展前景很稳定,很多公司都会招聘图像处理工程师。深度学习更不用说了,发展前景相当之大,但是门槛也非常高。

研发软件

本人研发一款基于传统图像处理算法的软件imgPro,核心功能是超多种算法组合调参和代码自动生成,定位是通用型软件,可以满足图像处理专业的学生或者图像处理初级工程师的一般需求。比如:

  1. 初步接触图像处理领域的张三,学习无从下手,我推荐阅读数字图像处理方面的书籍,并结合imgPro图像分析软件,可以快速入门此领域。
  2. 有一些图像处理基础的李四,想使用传统图像处理算法开发一个工程应用项目,但是对于算法的掌握不够全面。我相信,使用imgPro图像分析软件后,可以帮助你快速解决问题,或者提供一些开发思路。值的注意的是,imgPro中有一些经典工程应用组合算法的推荐,都可以在软件中实现,并支持生成代码。
  3. 脑海中有一些算法,但是代码能力稍微弱一些的王五,正常情况下,会从网络、OpenAI、Deepseek中查找算法的代码,一顿操作后,可能还运行不起来,也有可能代码本身就不正确,很是浪费时间。但是,王五直接操作imgPro图像分析软件,快速调参,满意可视化结果之后,一键生成代码,岂不美哉。

试用版软件无需激活,获取方式如下:
链接:https://pan.baidu.com/s/1ExksEfGtD8ovPw9VJ0fPWA?pwd=i267
提取码:i267

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值