32、生物测定与癌症风险评估中的最优设计及混合物风险分析

生物测定与癌症风险评估中的最优设计及混合物风险分析

在生物测定和癌症风险评估领域,非线性模型的应用十分广泛,其中Michaelis–Menten(MM)动力学模型和混合物风险评估是重要的研究方向。下面将详细介绍相关内容。

1. Michaelis–Menten模型的参数估计与置信区间

对于MM模型的参数 $\theta = (V_{max}, K_M)$,可以计算其渐近近似置信区间,方法与线性情况类似。另一种方法是应用Beale非线性度量,该度量涉及非线性模型的曲率。曲率小于 $\frac{1}{2}(F(\alpha, p, n - p))^{\frac{1}{2}}$,其中 $F$ 是具有参数 $(p, n - p)$ 的F分布,$\alpha$ 表示显著性水平。Beale非线性度量的最大值为:
[B = 1 + \frac{n}{n - 2}\frac{1}{\sqrt{F}}]
MM参数向量 $(V_{max}, K_M)$ 的近似置信区域由下式给出:
[(\theta - \hat{\theta})^T I(\hat{\theta}, \epsilon) (\theta - \hat{\theta}) \leq Bps^2F(\alpha, p, n - p)]
当 $B = 1$ 时,可得到线性近似。$\sigma^2$ 的一个合适估计量为:
[s^2 = \frac{1}{n - 2}\sum_{i = 1}^{n}(y_i - \hat{y}_i)^2]

2. Michaelis–Menten模型的D - 最优设计

在寻找MM模型的最优设计时,有两种思路。一是从生物学角度,研究酶诱导相互作用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值