数据结构 c语言 旅游规划

本文介绍如何使用C语言编写程序,解决旅游规划中的最短路径问题。根据输入的城市数量、道路信息和起始及目的地,计算并输出最短路径的总长度和最低费用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7-3 旅游规划 (25分)
有了一张自驾旅游路线图,你会知道城市间的高速公路长度、以及该公路要收取的过路费。现在需要你写一个程序,帮助前来咨询的游客找一条出发地和目的地之间的最短路径。如果有若干条路径都是最短的,那么需要输出最便宜的一条路径。

输入格式:
输入说明:输入数据的第1行给出4个正整数N、M、S、D,其中N(2≤N≤500)是城市的个数,顺便假设城市的编号为0~(N−1);M是高速公路的条数;S是出发地的城市编号;D是目的地的城市编号。随后的M行中,每行给出一条高速公路的信息,分别是:城市1、城市2、高速公路长度、收费额,中间用空格分开,数字均为整数且不超过500。输入保证解的存在。

输出格式:
在一行里输出路径的长度和收费总额,数字间以空格分隔,输出结尾不能有多余空格。


我的答案


#include<stdio.h>

#define MAXN 500
#define ERROR -1
#define Infinite 65534

int N, M, S, D;//城市的个数 高速公路的条数 出发地 目的地
int Dist[MAXN][MAXN], Cost[MAXN][MAXN];//距离与花费矩阵
int dist[MAXN], cost[MAXN], visit[MAXN];//最短距离与花费 标记数组

void Inicialization(void);
void FindTheWay(void);
int FindMinWay(void);

int main()
{
   
   
	scanf("%d %d %d %d", &N, &M, &S, &D);//城市的个数 高速公路的条数 出发地 目的地
	Inicialization
### C语言 数据结构 旅游规则 PTA 实现 解决方案 在讨论C语言中的数据结构以及其在PTA平台上的应用时,可以结合线性表、平衡二叉树以及其他基础算法的知识点。以下是关于如何设计并实现一个基于“旅游规则”的解决方案。 #### 定义问题背景 假设我们需要在一个城市网络中规划旅行路径,“旅游规则”可能涉及如下条件: 1. 城市之间的连接关系可以用图表示。 2. 需要记录访问过的节点及其顺序。 3. 可能存在特定约束(如最短距离或最少费用)。 为了满足这些需求,我们可以利用链表和树的数据结构来构建模型,并通过遍历或其他操作完成目标。 --- #### 使用双向链表管理城市列表 对于简单的城市序列存储,可以采用双向链表 `struct DuLNode` 来保存已访问的城市信息[^1]: ```c #include <stdio.h> #include <stdlib.h> // 定义双向链表结点 typedef struct DuLNode { int cityID; // 当前城市的编号 struct DuLNode *prior; // 指向前驱结点 struct DuLNode *next; // 指向后继结点 } DuLNode; void insertCity(DuLNode **head, int newCityID) { DuLNode *newNode = (DuLNode *)malloc(sizeof(DuLNode)); newNode->cityID = newCityID; newNode->prior = NULL; newNode->next = *head; if (*head != NULL) { (*head)->prior = newNode; } *head = newNode; } ``` 此部分代码实现了动态插入新城市到链表头部的功能。 --- #### 平衡二叉树优化查询效率 如果需要频繁地查找某个城市是否存在,则可引入平衡二叉树 `AVLTree` 提高性能[^2]: ```c #define Ty int typedef struct Node { Ty cityID; // 存储当前城市的唯一标识符 int height; // 结点的高度用于保持平衡性质 struct Node *LChild; // 左子树指针 struct Node *RChild; // 右子树指针 } AVLTreeNode, *AVLTree; int getHeight(AVLTree T) { return T == NULL ? -1 : T->height; } int getBalanceFactor(AVLTree T) { return T == NULL ? 0 : getHeight(T->LChild) - getHeight(T->RChild); } AVLTree rotateLeft(AVLTree A) { AVLTree B = A->RChild; A->RChild = B->LChild; B->LChild = A; A->height = getMax(getHeight(A->LChild), getHeight(A->RChild)) + 1; B->height = getMax(getHeight(B->LChild), getHeight(B->RChild)) + 1; return B; } AVLTree rotateRight(AVLTree A) { AVLTree B = A->LChild; A->LChild = B->RChild; B->RChild = A; A->height = getMax(getHeight(A->LChild), getHeight(A->RChild)) + 1; B->height = getMax(getHeight(B->LChild), getHeight(B->RChild)) + 1; return B; } ``` 上述代码片段展示了基本旋转逻辑以维持树的平衡状态。 --- #### 处理输入与输出 针对具体题目要求,在实际编码过程中还需要注意处理各种边界情况。例如,当遇到非法输入或者超出范围的情况时,应该及时返回错误提示而不是让程序崩溃运行[^4]: ```c if (scanf("%d", &inputValue) != 1 || inputValue < minValue || inputValue > maxValue) { fprintf(stderr, "Invalid input detected.\n"); exit(EXIT_FAILURE); } ``` 此外,某些复杂场景下还可能需要用到辅助函数比较最大值最小值等简单运算[^3]。 --- #### 综合案例分析 最后给出一个综合性的例子演示整个流程是如何工作的。假定我们要寻找一条从起点出发经过若干中间站点最终到达终点的最佳路线[^5]: ```c #include <stdio.h> int main() { int N, M, startCity, endCity; scanf("%d%d%d%d", &N, &M, &startCity, &endCity); // 初始化相关变量... while (M--) { int u, v, w; scanf("%d%d%d", &u, &v, &w); // 构建邻接矩阵/边集数组等形式表达的地图信息... } // 执行Dijkstra/BFS/DFS等搜索策略... printf("Optimal path found!\n"); return 0; } ``` 以上仅为框架示意,请根据实际情况调整细节参数设置。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值