简单URL队列与复杂任务流转的边界实践 —— 速查小抄

爬虫代理

写在前面

做过一定规模的爬虫项目之后,你会发现:真正的难点往往不在「如何发请求」或者「如何解析 HTML」,而在 任务调度与任务组织
刚开始的时候,一个简单的 URL 列表丢进队列,循环抓取就能跑起来。但随着业务需求增加,数据链路复杂起来,你就会发现:

  • 招聘网站抓取时,如果只要职位列表还好,一旦要爬详情页、公司页甚至评论,整个任务管理就容易变得一团乱。
  • 金融数据分析更明显:一个股票代码,可能要去请求财报、行业对比、价格趋势等多个接口,任务之间还有上下文依赖。

所以,什么时候用「简单队列」就够,什么时候必须上「复杂流转」框架,这是爬虫系统设计绕不开的边界问题。下面我整理了一个速查式的小抄,结合两个典型场景:招聘市场监测金融数据采集

功能点梳理

  • 招聘市场监测(对应简单队列)
    • 从招聘网站批量抓列表页就够了
    • URL 直接入队消费,不需要复杂调度
    • 提取的主要是职位名、薪资、公司地点等单层数据
  • 金融数据采集(对应复杂流转)
    • 一个入口任务会派生多个下游任务
    • 上下文必须传递(比如股票代码)
    • 常见链路:股票列表 → 财报接口 → 行业对比接口 → 价格趋势接口
  • 代理配置(示例用爬虫代理)
    • 加一层代理可以规避封禁
    • 用户名密码方式认证,兼容常见 HTTP 库

代码速查

招聘市场监测:简单队列实现

import requests
from queue import Queue

# === 爬虫代理配置(示例:亿牛云 www.16yun.cn)===
proxy_host = "proxy.16yun.cn"
proxy_port = "3100"
proxy_user = "16YUN"
proxy_pass = "16IP"

proxies = {
    "http": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
    "https": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
}

# === URL 队列 ===
url_queue = Queue()
urls = [
    "https://www.51job.com/joblist/page1",
    "https://www.51job.com/joblist/page2"
]
for url in urls:
    url_queue.put(url)

# === 简单消费队列 ===
while not url_queue.empty():
    url = url_queue.get()
    try:
        resp = requests.get(url, proxies=proxies, timeout=10)
        print("抓取成功:", url, len(resp.text))
        # TODO: 在这里解析职位信息
    except Exception as e:
        print("抓取失败:", url, e)

金融数据采集:复杂任务流转

import requests
from queue import Queue

# === 爬虫代理配置(示例:亿牛云 www.16yun.cn)===
proxy_host = "proxy.16yun.cn"
proxy_port = "3100"
proxy_user = "16YUN"
proxy_pass = "16IP"

proxies = {
    "http": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
    "https": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
}

# === 初始任务: 股票列表 ===
task_queue = Queue()
task_queue.put(("https://example.com/stock/list", "stock_list", {}))

# === 任务流转调度 ===
while not task_queue.empty():
    url, task_type, context = task_queue.get()
    try:
        resp = requests.get(url, proxies=proxies, timeout=10)
        data = resp.text  # 假设返回 JSON

        if task_type == "stock_list":
            # 假设解析出股票代码
            stock_codes = ["600519", "000001"]
            for code in stock_codes:
                task_queue.put((f"https://api.example.com/finance/{code}/report", "financial_report", {"code": code}))
                task_queue.put((f"https://api.example.com/finance/{code}/industry", "industry_compare", {"code": code}))

        elif task_type == "financial_report":
            print("财报数据:", context["code"], len(data))

        elif task_type == "industry_compare":
            print("行业对比数据:", context["code"], len(data))

    except Exception as e:
        print("任务失败:", url, task_type, e)

实际经验里的配置建议

  1. 队列的选择
    • 招聘监测这类轻量任务,用 queue.Queue 足够。
    • 金融数据这类多层流转,建议直接上 Redis + scrapy-redis,分布式更稳。
  2. 代理使用
    • 加上 timeout=10,并设置失败重试次数。
    • 如果流量大,最好做一个 IP 池,避免频繁被限速。
  3. 任务上下文
    • 招聘监测 → 保存 HTML 即可。
    • 金融采集 → 任务之间要带上「股票代码」等关键字段,否则数据就会对不上。

怎么快速验证

  • 招聘监测:随便丢两三个招聘列表页 URL,看能否拿到 HTML 内容。
  • 金融数据:跑一个模拟流程,看股票代码能否顺利从列表流转到财报接口、再到行业接口。
  • 代理
test_url = "http://httpbin.org/ip"
resp = requests.get(test_url, proxies=proxies, timeout=5)
print(resp.json())  # 输出代理出口 IP

整体来说:

  • 招聘监测 适合用简单队列,写起来轻量快速。
  • 金融数据 必须用任务流转,不然上下文传不动,代码维护不了多久就会失控。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值