写在前面
做过一定规模的爬虫项目之后,你会发现:真正的难点往往不在「如何发请求」或者「如何解析 HTML」,而在 任务调度与任务组织。
刚开始的时候,一个简单的 URL 列表丢进队列,循环抓取就能跑起来。但随着业务需求增加,数据链路复杂起来,你就会发现:
- 招聘网站抓取时,如果只要职位列表还好,一旦要爬详情页、公司页甚至评论,整个任务管理就容易变得一团乱。
- 金融数据分析更明显:一个股票代码,可能要去请求财报、行业对比、价格趋势等多个接口,任务之间还有上下文依赖。
所以,什么时候用「简单队列」就够,什么时候必须上「复杂流转」框架,这是爬虫系统设计绕不开的边界问题。下面我整理了一个速查式的小抄,结合两个典型场景:招聘市场监测 和 金融数据采集。
功能点梳理
- 招聘市场监测(对应简单队列)
- 从招聘网站批量抓列表页就够了
- URL 直接入队消费,不需要复杂调度
- 提取的主要是职位名、薪资、公司地点等单层数据
- 金融数据采集(对应复杂流转)
- 一个入口任务会派生多个下游任务
- 上下文必须传递(比如股票代码)
- 常见链路:股票列表 → 财报接口 → 行业对比接口 → 价格趋势接口
- 代理配置(示例用爬虫代理)
- 加一层代理可以规避封禁
- 用户名密码方式认证,兼容常见 HTTP 库
代码速查
招聘市场监测:简单队列实现
import requests
from queue import Queue
# === 爬虫代理配置(示例:亿牛云 www.16yun.cn)===
proxy_host = "proxy.16yun.cn"
proxy_port = "3100"
proxy_user = "16YUN"
proxy_pass = "16IP"
proxies = {
"http": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
"https": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
}
# === URL 队列 ===
url_queue = Queue()
urls = [
"https://www.51job.com/joblist/page1",
"https://www.51job.com/joblist/page2"
]
for url in urls:
url_queue.put(url)
# === 简单消费队列 ===
while not url_queue.empty():
url = url_queue.get()
try:
resp = requests.get(url, proxies=proxies, timeout=10)
print("抓取成功:", url, len(resp.text))
# TODO: 在这里解析职位信息
except Exception as e:
print("抓取失败:", url, e)
金融数据采集:复杂任务流转
import requests
from queue import Queue
# === 爬虫代理配置(示例:亿牛云 www.16yun.cn)===
proxy_host = "proxy.16yun.cn"
proxy_port = "3100"
proxy_user = "16YUN"
proxy_pass = "16IP"
proxies = {
"http": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
"https": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
}
# === 初始任务: 股票列表 ===
task_queue = Queue()
task_queue.put(("https://example.com/stock/list", "stock_list", {}))
# === 任务流转调度 ===
while not task_queue.empty():
url, task_type, context = task_queue.get()
try:
resp = requests.get(url, proxies=proxies, timeout=10)
data = resp.text # 假设返回 JSON
if task_type == "stock_list":
# 假设解析出股票代码
stock_codes = ["600519", "000001"]
for code in stock_codes:
task_queue.put((f"https://api.example.com/finance/{code}/report", "financial_report", {"code": code}))
task_queue.put((f"https://api.example.com/finance/{code}/industry", "industry_compare", {"code": code}))
elif task_type == "financial_report":
print("财报数据:", context["code"], len(data))
elif task_type == "industry_compare":
print("行业对比数据:", context["code"], len(data))
except Exception as e:
print("任务失败:", url, task_type, e)
实际经验里的配置建议
- 队列的选择
- 招聘监测这类轻量任务,用
queue.Queue
足够。 - 金融数据这类多层流转,建议直接上
Redis + scrapy-redis
,分布式更稳。
- 招聘监测这类轻量任务,用
- 代理使用
- 加上
timeout=10
,并设置失败重试次数。 - 如果流量大,最好做一个 IP 池,避免频繁被限速。
- 加上
- 任务上下文
- 招聘监测 → 保存 HTML 即可。
- 金融采集 → 任务之间要带上「股票代码」等关键字段,否则数据就会对不上。
怎么快速验证
- 招聘监测:随便丢两三个招聘列表页 URL,看能否拿到 HTML 内容。
- 金融数据:跑一个模拟流程,看股票代码能否顺利从列表流转到财报接口、再到行业接口。
- 代理:
test_url = "http://httpbin.org/ip"
resp = requests.get(test_url, proxies=proxies, timeout=5)
print(resp.json()) # 输出代理出口 IP
整体来说:
- 招聘监测 适合用简单队列,写起来轻量快速。
- 金融数据 必须用任务流转,不然上下文传不动,代码维护不了多久就会失控。