文章目录
0. 前言
-
其他参考资料
-
后续会跑一个例子,看了解下细节
-
一句话总结:Deepstream 提供了智能视频分析系统的端到端解决方案。
-
如何理解“端到端”:
- 包含了视频分析系统的所有功能
- 包括读取数据源、视频解码、图像预处理、模型推理、预测结果可视化、结果后处理,以及云端与边缘端的可靠通信。
-
主要做了什么工作:提高系统的吞吐量。
- 上面每一步操作都尽量使用 GPU 资源并行计算,提高资源利用率。
- Deepstream 的主要优势体现在多路视频、多传感器输入的情况下,提高资源利用率。
-
开发流程:提供了许多C++/Python apps,基本上就是在原有的项目中进行增减。这一部分还没有具体调研,需要后续用实例来证明。
-
主要缺点:闭源,只能用在Jetson、Tesla设备上。
1 DeepStream: Next-Generation Video Analytics for Smart Cities
- 链接,翻译
- 内容概述:介绍性质的BLOG
- Deepstreeam 提供了基于深度学习的视频分析解决方案。
- 是 NVIDIA Metropolis 的一部分
- 主要优化方向是:视频解码速度、模型推理速度、低功耗。
- 主要解决的问题是 scale(同时处理多路视频),在于如何通过经济高效的方式扩展已有的应用。
The key to realizing the potential of video analytics is building applications that scale in a cost-effective manner.
- Deepstream提供的Workflop
- 总体流程就是或去数据源数据、视频解码、预处理、模型推理、其他更多操作。
- 视频解码使用了 NVIDIA Video Codec SDK
- 数据预处理主要就是色彩转换、resize等,通过custom CUDA kernels and NVIDIA Performance Primitives实现
- 模型推理通过 TensorRT 实现
- 目标检测实例
2 DeepStream SDK
- 链接
- 基本内容:整体介绍了Deepstream
- DeepStream 是为了构建、部署视频智能分析应用与服务,提供跨平台、可扩展的部署框架。
Build and deploy AI-powered Intelligent Video Analytics apps and services. DeepStream offers a multi-platform scalable framework with TLS security to deploy on the edge and connect to any cloud.
- Deepstream 在整体系统中的定位如下图所示
- 整合NVidia的各类工具(如Cuda/TensorRT/Triton/视频解码等),提高英伟达设备(Jetson、Tesla)的资源利用率。
- 性能如何
- 这里是 end-to-end 的性能,包括了视频解码等。
- 输入视频是 1080p + 30fps
- batch size 是 FPS/30
- Nano和TX2是FP16
-
Deepstream 的优势
-
Seamless Development:无缝部署,不知道想表达什么意思
-
Managed IVA Apps & Services:管理、控制视频监控系统,
-
Powerful End-to-End AI Solutions:可以较快上手,而且是部署相关全套的工具都有
-
-
FAQ
- Deepstream 是闭源的,但开源了部分插件
- 主要应用于多路视频、多传感器数据分析,如零售场景、停车管理等。
- 可通过Triton 直接运行TF/PyTorch模型。
- 内置了一些常用模型,如SSD/YOLO等。
3. DeepStream Getting Started
- 链接
- 主要内容:罗列了 Deepstream 相关官方资料
- 罗列的内容包括
- SDK下载链接
- 各种官方app(相关Github链接)
- 文档、论坛地址
4. NVIDIA DeepStream SDK Developer Guide
- 链接
- 这应该是后续学习deepstream的主要资料。
- 主要内容可分为
- DeepStream Getting Started:包括简介、下载与安装、Docker容器等相关信息
- DeepStream Samples:总结了官方源码资料
- TLT Integration with DeepStream:迁移学习相关,TLT就是 Transfoer learning toolkit
- Tutorials and How-to’s:NvDCF(跟踪算法)参数微调教程,自定义 yolo 教程(只支持yolov3)
- DeepStream Performance:性能概述
- DeepStream Custom Model:如何使用自定义模型(而不是内置的)
- DeepStream Key Features:
- Smart Video Record
- IoT 中的通信问题
- 在线模型升级
- 为每一帧设置 NTP Timestamp
- DeepStream Application Migration:从DS4.x迁移到DS5.x的方法
- Plugins Development Guide:介绍了一堆插件