python实现中心极限定理
中心极限定理(Central Limit Theorem, CLT)是概率论中的一个重要定理,它表明在一定条件下,大量独立同分布的随机变量的均值近似服从正态分布,无论这些随机变量的原始分布是什么。这个定理在统计学和数据分析中有广泛的应用。
下面,我们将通过Python代码来演示中心极限定理。我们将从一个非正态分布(例如指数分布)中采样,计算多次采样的平均值,并绘制这些平均值的分布图。随着样本数量的增加,平均值的分布将趋近于正态分布。
完整的Python代码实现
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
def central_limit_theorem(
sample_size=30,