李宏毅2020机器学习作业6-Adversarial Attack:对抗攻击(更新中)

本文介绍李宏毅2020年机器学习课程的第六次作业,涉及对抗攻击,特别是Fast Gradient Sign Method (FGSM)。作业要求实现FGSM攻击,对比黑盒和白盒攻击,并探讨对抗样本的生成。通过攻击预训练的神经网络模型,分析不同模型的易受攻击性,同时尝试防御方法,如高斯滤波,以降低模型的误判率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文仍在更新中
更多作业,请查看 李宏毅2020机器学习资料汇总



0 作业链接

直接在李宏毅课程主页可以找到作业:

如果你打不开colab,下方是搬运的jupyter notebook文件和助教的说明ppt:


1 作业说明

环境

  • jupyter notebook
  • python3
  • pytorch-gpu

任务说明

本次

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iteapoy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值