国内三大常见核心期刊体系简介——CSSCI、CSCD与中文核心期【转】刊

本文详细介绍了国内三大权威学术期刊评价体系——中文社会科学引文索引(CSSCI)、中国科学引文数据库(CSCD)与北京大学中文核心期刊的构建背景、评价标准与应用领域,旨在帮助科研人员选择合适的期刊发表论文,提升学术影响力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    目前学术期刊的种类和数量众多,要使自己的论文被更多的人看到并产生影响,在什么样的期刊上发表是很重要的,现在许多高校和科研单位对科研人员的评价也要看其发表论文的期刊级别。

    目前国内有7大核心期刊(或来源期刊)遴选体系:(1)中国科学院文献情报中心“中国科学引文数据库(CSCD)来源期刊”;(2)南京大学“中文社会科学引文索引(CSSCI)来源期刊”;(3)北京大学图书馆“中文核心期刊”;(4)中国科学技术信息研究所“中国科技论文统计源期刊”(又称“中国科技核心期刊”);(5)中国社会科学院文献信息中心“中国人文社会科学核心期刊”;(6)中国人文社会科学学报学会“中国人文社科学报核心期刊”;(7)万方数据股份有限公司正在建设中的“中国核心期刊遴选数据库”。

    省内外众多高校(如:浙江大学、电子科技大学、西南交通大学、西华大学、宁波大学、三峡大学、西南科技大学等)也对学术期刊进行了遴选评级,普遍分为SCI或SSCI收录论文EI等收录论文CSCD或CSSCI北京大学图书馆“中文核心期刊”等数目不同的多个等级,并以此作为评价学术论文水平的主要依据。

    下面就国内最常见也是最权威的三个核心期刊体系作简单介绍(SCI和Ei的相关介绍可参见本网站其他文章所作介绍)。

 

    一、中文社会科学引文索引CSSCI

    由南京大学研制成功的“中文社会科学引文索引”(Chinese Social Sciences Citation Index,简称CSSCI)是国家、教育部重点课题攻关项目。CSSCI遵循文献计量学规律,采取定量与定性评价相结合的方法从全国2700余种中文人文社会科学学术性期刊中精选出学术性强、编辑规范的期刊作为来源期刊。现已开发的CSSCI(1998-2006年)9年数据,来源文献近63万余篇,引文文献409余万篇。该项目成果填补了我国社会科学引文索引的空白,达到了国内领先水平。
    对于社会科学研究者,CSSCI从来源文献和被引文献两个方面向研究人员提供相关研究领域的前沿信息和各学科学术研究发展的脉搏,通过不同学科、领域的相关逻辑组配检索,挖掘学科新的生长点,展示实现知识创新的途径。对于社会科学管理者,CSSCI提供地区、机构、学科、学者等多种类型的统计分析数据,从而为制定科学研究发展规划、科研政策提供科学合理的决策参考。对于期刊研究与管理者,CSSCI提供多种定量数据:被引频次、影响因子、即年指标、期刊影响广度、地域分布、半衰期等,通过多种定量指标的分析统计,可为期刊评价、栏目设置、组稿选题等提供科学依据。CSSCI也可为出版社与各学科著作的学术评价提供定量依据。
    中文社会科学引文索引指导委员会第七次会议于2007年11月25日在南京召开。会议根据中国社会科学研究评价中心提供的各学科期刊的总被引次数、2004-2006三年他引影响因子及其加权值数据,对拟入选CSSCI来源期刊进行了定性评价。经报教育部批准共确定CSSCI(2008-2009)来源期刊528种,CSSCI扩展版来源期刊152种(共计680种)、来源集刊86种。(详细目录见
http://cssci.nju.edu.cn/notice.htm

    二、中国科学引文数据库CSCD 

    中国科学引文数据库(Chinese Science Ctitation Database,简称CSCD)创建于1989年,收录我国数学、物理、化学、天文学、地学、生物学、农林科学、医药卫生、工程技术、环境科学和管理科学等领域出版的中英文科技核心期刊和优秀期刊千余种,目前已积累从1989年到现在的论文记录300万条,引文记录近1700万条。中国科学引文数据库内容丰富、结构科学、数据准确。系统除具备一般的检索功能外,还提供新型的索引关系——引文索引,使用该功能,用户可迅速从数百万条引文中查询到某篇科技文献被引用的详细情况,还可以从一篇早期的重要文献或著者姓名入手,检索到一批近期发表的相关文献,对交叉学科和新学科的发展研究具有十分重要的参考价值。中国科学引文数据库还提供了数据链接机制,支持用户获取全文。
    中国科学引文数据库具有建库历史最为悠久、专业性强、数据准确规范、检索方式多样、完整、方便等特点,自提供使用以来,深受用户好评,被誉为“中国的SCI”。
    中国科学引文数据库是我国第一个引文数据库。曾获中国科学院科技进步二等奖。1995年CSCD出版了我国的第一本印刷本《中国科学引文索引》,1998年出版了我国第一张中国科学引文数据库检索光盘,1999年出版了基于CSCD和SCI数据,利用文献计量学原理制作的《中国科学计量指标:论文与引文统计》,2003年CSCD上网服务,推出了网络版,2005年CSCD出版了《中国科学计量指标:期刊引证报告》。2007年中国科学引文数据库与美国Thomson-Reuters Scientific合作,中国科学引文数据库将以ISI Web of Knowledge为平台,实现与Web of Science的跨库检索,中国科学引文数据库是ISI Web of Knowledge平台上第一个非英文语种的数据库。
    中国科学引文数据库已在我国科研院所、高等学校的课题查新、基金资助、项目评估、成果申报、人才选拔以及文献计量与评价研究等多方面作为权威文献检索工具获得广泛应用。主要包括:自然基金委国家杰出青年基金指定查询库;第四届中国青年科学家奖申报人指定查询库;自然基金委资助项目后期绩效评估指定查询库;众多高校及科研机构职称评审、成果申报、晋级考评指定查询库;自然基金委国家重点实验室评估查询库。中国科学院院士推选人查询库;教育部学科评估查询库;教育部长江学者;中科院百人计划。
    CSCD分为核心库和扩展库,数据库的来源期刊每两年进行评选一次。核心库的来源期刊经过严格的评选,是各学科领域中具有权威性和代表性的核心期刊。扩展库的来源期刊也经过大范围遴选,入选者是我国各学科领域较优秀的期刊。
2007年5月,中国科学院国家科学图书馆通过 Science China 网站发布了中国科学引文数据库(CSCD)的“中国科学引文数据库核心库和引文库来源期刊列表(2007年-2008年)”。共遴选了1083种期刊,其中英文刊55种,中文刊1028种;核心库期刊737种(以C为标记)扩展库期刊346种(以E为表记)。(详细目录见:
http://www.sciencechina.cn/cscd_source.html

    三、北京大学中文核心期刊

    北京大学在国内最早进行期刊评估的工作,其出版的《中文核心期刊要目总览》就界定了国内核心期刊的范围。该书已于1992、1996、2000、2004年出版过四版,在社会上引起了较大反响,图书情报界、学术界、出版界和科研管理部门对该项研究成果都给予了较高评价,普遍认为它适应了社会需要,为国内外图书情报部门对中文学术期刊的评估和选购提供了参考依据,促进了中文期刊编辑和出版质量的提高,已成为具有一定权威性的参考工具书。为了及时反映中文期刊发展变化的新情况,我们开展了新一版核心期刊的研究工作。课题组认真总结了前三版的研究经验,对核心期刊评价的基础理论、评价方法(定量评价指标体系、核心期刊表的学科划分、核心期刊数量)、评价软件、核心期刊的作用与影响等问题进行了深入研究,在此基础上,进一步改进评价方法,使之更加科学合理,力求使评价结果能更准确地揭示中文期刊的实际情况。本版核心期刊定量评价,采用了被索量、被摘量、被引量、它引量、被摘率、影响因子、获国家奖或被国内外重要检索工具收录等7个评价指标,选作评价指标统计源的数据库达51种,统计文献量达到943万余篇次(1999至2001年),涉及期刊1万2千种。本版还加大了专家评审力度,1873位学科专家参加了核心期刊评审工作。经过定量评价和定性评审,从我国正在出版的中文期刊中评选出1800种核心期刊,分属七大编75个学科类目。该书由各学科核心期刊表、核心期刊简介、专业期刊一览表等几部分组成,不仅可以查询学科核心期刊,还可以检索正在出版的学科专业期刊,是图书情报、新闻出版、科研成果管理等部门和期刊读者的不可或缺的参考工具书。
  《中文核心期刊要目总览》由北京大学图书馆和北京高校图书馆期刊工作研究会合编,北京高校图书馆期刊工作研究会成员馆、中国科学院文献中心、中国社会科学院文献中心、中国人民大学书报资料中心等相关单位的专家和期刊工作者参加了研究。该要目总揽即将推出2008版。

 

本文引自:http://www.360doc.com/content/11/1031/22/7902182_160668185.shtml

### 如何在知网研学平台搜索AIGC相关文献 #### 1. 明确关键词 为了高效获取AIGC(人工智能生成内容)相关的高质量文献,需先明确核心关键词及其变体。常见的关键词包括但不限于“AIGC”、“Artificial Intelligence Generated Content”、“AI写作”、“自然语言处理(NLP)”、“图像生成”等[^1]。 #### 2. 利用高级检索功能 知网研学提供了强大的高级检索选项,可以通过组合多个条件来缩小范围并提高命中精度: - **字段限定**:选择“主题”或“摘要”,输入“AIGC”作为主要查询词。 - **时间过滤**:由于AIGC是一个新兴领域,建议将发表日设定为最近三年以内。 - **来源类别**:优先考虑核心期刊CSSCI/CSCD收录的文章以及高水平会议论文集中的研究成果[^3]。 #### 3. 结合二次文献辅助定位 除了直接查找原始研究外,还可以借助综述型文章或者书目索引来快速了解整个领域的概貌和发展趋势。这类二次性文献通常会提供详尽的背景介绍和技术框架描述[^2]。 #### 4. 应用具体策略降低误报率 当初步筛选得到大量候选条目之后,可以采用如下方法进一步甄别真正有价值的材料: - 关注那些频繁提及特定算法模型(比如GPT系列、BERT)或是实际应用场景实例的研究; - 对于疑似由自动化程序批量生产的低质量内容,则可通过检查其内部是否存在明显的人工智能创作特征来进行排除——例如过度标准化的语言表达模式、较低的专业术语浓度以及欠缺合理衔接关系的话语片段等等[^3]。 ```python # 示例Python脚本用于模拟自动下载指定数量最新发布的有关AIGC中文献列表 import requests def fetch_cnkistudy_papers(keyword="AIGC", top_n=10): url = f"https://kns.cnki.net/kns/brief/result.aspx?dbprefix=CJFQ&kw={keyword}" headers = {"User-Agent": "Mozilla/5.0"} response = requests.get(url, headers=headers) if response.status_code != 200: raise Exception("Failed to retrieve data from CNKI Study.") # 这里仅展示伪代码逻辑示意,未实现具体的HTML解析过程 papers_info = [] # 假设此变量存储提取后的每篇文章基本信息字典集合 return papers_info[:top_n] if __name__ == "__main__": try: results = fetch_cnkistudy_papers() for idx, paper in enumerate(results, start=1): print(f"{idx}. {paper['title']} - Published on {paper['date']}") except Exception as e: print(e) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值