【GitHub项目推荐--AI画图】【转载】

MidJourney 参考手册

使用 MidJourney(最火爆的 AI 画图工具) 时,可以参考这个开源项目,该项目梳理了常用提示词和样式作为参考,非常详细!

开源项目:https://github.com/willwulfken/MidJourney-Styles-and-Keywords-Reference

使用 ChatGPT 生产提示词

这是一个基于 ChatGPT 的 MidJorney 提示生成模型,你不需要记住繁杂的提示词,告诉 ChatGPT 就行了,它会帮你生成。

开源项目:github.com/awekrx/ChatGPT-MidJourney-prompt

降低 AI 画图使用成本

该开源项目将难安装难配置的 AI 画图模型做成了一个网页,操作简单、玩法花样,该开源项目基于 Stable Diffusion 的开源项目。

开源地址:AUTOMATIC1111/stable-diffusion-webui

AI 画图资料合集

一个国人整理的

### 使用AI工具绘制生物学细胞通路的方法和工具 #### R语言及其扩展包的应用 为了实现生物学细胞通路的绘制,R语言提供了强大的支持。特别是`igraph`和`ggraph`两个软件包,在处理复杂网络结构方面表现出色[^2]。前者专注于高效的形算法计算;后者则侧重于美观且功能丰富的表渲染。 ```r library(igraph) library(ggraph) # 创建一个简单的无向作为例子 edges <- data.frame(from=c('A', 'B', 'C'), to=c('D', 'E', 'F')) network_graph <- graph_from_data_frame(edges, directed=FALSE) # 可视化该网络 ggraph(network_graph, layout='kk') + geom_edge_link() + geom_node_point() ``` 上述代码展示了如何基于节点间的关系创建并显示基本的交互网状结构。对于实际应用场景而言,通常会加载来自实验获得的数据集,并据此建立更为精细详尽的联系模式。 #### 单细胞基因组学中的AI应用 针对单细胞层面的研究工作,除了传统的统计手段外,还引入了许多先进的机器学习技术来进行更加深入细致地解析。具体来说,这类流程往往涉及先对各个独立单元特性做出精确描绘,再借助特定模型完成后续推测任务[^3]。在此过程中,神经网络架构被证明特别适合捕捉高维度空间内的潜在规律,从而助力科学家们揭示生命现象背后的本质原理。 #### GitHub资源链接 值得注意的是,开源社区内存在大量可供借鉴的学习材料和技术文档。例如,由cxli维护的一个项目页面就包含了有关路径绘的具体指南以及配套脚本文件[^4]。访问者可以通过阅读说明文字获取更多关于定制专属解决方案的信息。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值