✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在含集群电动汽车(EV)并网的微网系统中,前期研究多聚焦于不确定性管控(如可再生能源波动、EV 充电随机),通过概率建模、场景分析等方法降低运行风险。然而,EV 作为 “可移动的分布式储能单元”,其核心价值不仅在于 “被动适应调度”,更在于主动提供灵活性—— 即通过充电时间可调、充放电功率可控、车辆到电网(V2G)双向互动等能力,成为衔接微网多时间尺度调度的 “柔性纽带”。
微网调度的核心矛盾在于 “时间尺度与调度精度的匹配”:长期调度(如日前)依赖宏观预测,需制定全局经济性方案;短期调度(如实时)需应对突发波动,需快速响应能力。若缺乏多尺度协调,易出现 “日前方案与日内实际偏差大”“实时调度无柔性资源可用” 等问题。而 EV 的灵活性可在不同时间尺度中承担差异化角色:日前调度中参与 “基础计划优化”,日内调度中参与 “偏差修正”,实时调度中参与 “紧急功率平衡”,通过多尺度协同实现微网 “经济 - 可靠 - 灵活” 的三重目标。
本文将从 EV 灵活性的量化定义出发,构建 “日前 - 日内 - 实时” 三级时间尺度协调调度框架,明确各尺度的调度目标、EV 灵活性应用策略及多尺度衔接机制,最终通过模型与案例验证该框架的有效性。
二、电动汽车灵活性的内涵与量化:调度可用的 “柔性资源”
2.1 EV 灵活性的核心维度
EV 灵活性是指其在满足用户出行需求的前提下,可调节充电时间、充放电功率的能力,具体体现为三个维度:
- 时间灵活性:EV 充电可延迟或提前的时间窗口(如用户允许车辆在 18:00-23:00 间充电,而非固定 18:00 开始);
- 功率灵活性:EV 充电功率可在额定范围内动态调整(如从 7kW 降至 3kW),或通过 V2G 实现放电(向微网反馈功率);
- 容量灵活性:EV 集群可聚合的总可调节容量(如 100 辆 EV 可提供 200kW 的调峰容量或 50kWh 的备用容量)。
需注意:EV 灵活性的前提是 “不影响用户体验”—— 即调度需满足 EV 的出行约束(如次日出发前电池电量≥80%)和电池寿命约束(如放电深度≤80%、充放电循环次数限制)。
三、微网多时间尺度协调调度框架:三级联动与 EV 角色定位
微网多时间尺度调度的核心逻辑是 “粗粒度规划 - 中粒度调整 - 细粒度修正”,各尺度的时间粒度、预测精度、调度目标及 EV 灵活性应用策略存在显著差异,但需通过 “边界约束传递” 和 “信息反馈” 实现协同。
3.1 多尺度衔接机制:信息传递与约束耦合
各尺度并非独立运行,需通过 “上层约束下层、下层反馈上层” 实现协同:
- 日前→日内:日前调度确定的 “EV 集群分时段充电功率上限”“主电网购电最大额度” 成为日内调度的边界约束,确保日内调整不突破全局经济性框架;
- 日内→实时:日内调度更新的 “EV 可用灵活性容量”“可再生能源功率偏差范围” 为实时调度提供 “可调用资源清单”,避免实时调度无柔性资源可用;
- 实时→日内 / 日前:实时调度中 EV 的实际响应数据(如灵活性调用成功率、电池损耗)反馈至日内和日前模型,优化次日 / 后续的灵活性成本参数和调度策略(如提高用户激励系数以提升响应率)。
四、考虑 EV 灵活性的多时间尺度调度模型构建
五、模型求解算法:适配多尺度特性的分层求解策略
多时间尺度模型的时间粒度、变量维度差异大,需采用 “分层求解 + 信息迭代” 的算法框架,避免 “一刀切” 导致的计算效率低下或精度不足:
5.1 日前调度:混合整数线性规划(MILP)
日前调度涉及 “EV 充电时段选择”(整数变量,如是否在 t 时段充电)和 “电源出力计划”(连续变量),适合用 MILP 求解。通过 Gurobi、CPLEX 等求解器,基于历史预测数据(可再生能源、负荷、EV 出行计划)制定全局方案,计算效率满足 “日前 1 次 / 天” 的调度需求(通常求解时间≤1h)。
5.2 日内调度:滚动时域优化(RTO)
日内调度需根据短期预测动态更新方案,采用 “滚动时域” 策略:将全天划分为多个重叠的时间窗口(如每 15min 更新 1 次,窗口长度 2h),每次仅求解当前窗口内的优化问题,下次求解时滚动窗口并融入新预测数据。求解算法可采用线性规划(LP),因日内调整以连续变量(功率微调)为主,求解时间≤5min,满足 “15min / 次” 的更新频率。
5.3 实时调度:模型预测控制(MPC)+ 快速启发式算法
实时调度需秒级 / 分钟级响应,传统优化算法难以满足速度要求,采用 “MPC + 启发式算法” 组合:
- MPC:预测未来短时间窗口(如 10min)的功率波动,确定所需的灵活性容量;
- 快速启发式算法(如粒子群优化、贪心算法):在 EV 集群中筛选 “响应快、成本低” 的车辆,分配实时调整指令,求解时间≤1s,满足实时性要求。
六、案例分析:验证 EV 灵活性与多尺度协调的价值
6.1 案例场景设置
以某园区微网为例,系统包含:
- 可再生能源:500kW 光伏(日均发电量 2000kWh)、800kW 风电(日均发电量 3200kWh);
- 可控电源:300kW 微型燃气轮机(发电成本 0.8 元 /kWh);
- 储能系统:200kWh 锂电池(充放电效率 0.9,成本 0.5 元 /kWh);
- EV 集群:100 辆通勤 EV(单车电池容量 40kWh,充电功率 3-7kW,支持 V2G,用户允许 18:00-23:00 充电,次日需电量≥32kWh);
- 负荷:园区居民 + 商业负荷(日均 10000kWh,高峰时段 18:00-21:00,功率 400kW);
- 电价:峰时(18:00-21:00)1.2 元 /kWh,平时(8:00-18:00、21:00-23:00)0.7 元 /kWh,谷时(23:00-8:00)0.3 元 /kWh。
设置三组对比方案:
- 方案 1:无 EV 灵活性(EV 固定 18:00-20:00 满功率充电,不可调);
- 方案 2:仅单尺度(实时)调用 EV 灵活性;
- 方案 3:本文提出的 “日前 - 日内 - 实时” 多尺度协调调度(充分利用 EV 灵活性)。
6.2结果分析
- 经济性提升:方案 3 通过日前调度将 EV 充电转移至谷时(0.3 元 /kWh),日内调度调整功率避开峰时购电,实时调度减少备用电源启用,总成本降低 17.9%;
- 灵活性价值:EV 集群在方案 3 中提供了日均 1200kWh 的可调节容量,平抑光伏 / 风电波动(消纳率提升至 96%),同时为用户节省 35.2% 的充电成本;
- 多尺度优势:方案 2 仅实时调用 EV 灵活性,无法提前规划谷时充电,成本比方案 3 高 8.5%,验证了多尺度协调的必要性。
七、挑战与展望
7.1 现存挑战
- 用户参与意愿:EV 灵活性依赖用户配合,需设计更精准的激励机制(如动态补贴、积分兑换),避免用户因调度影响出行体验;
- 预测精度瓶颈:日前调度的预测误差(如光伏功率偏差≥20%)可能导致基础方案不合理,需结合机器学习(如 LSTM)提升预测精度;
- 通信与控制延迟:实时调度需 EV 与微网调度中心的低延迟通信(≤100ms),现有通信技术(如 4G)难以完全满足,需推进 5G + 边缘计算应用。
7.2 未来研究方向
- EV - 储能 - 可再生能源协同:将 EV 灵活性与储能、虚拟电厂(VPP)结合,构建 “多主体协同” 的调度体系;
- 多目标优化升级:在经济、可靠性基础上,加入 “碳减排目标”,利用 EV 灵活性促进微网低碳运行;
- 分布式调度架构:采用 “边缘计算 + 区块链” 技术,实现 EV 集群的分布式自主调度,降低中心调度压力,提升隐私保护能力。
八、结论
本文构建的 “考虑 EV 灵活性的微网多时间尺度协调调度框架”,通过明确 EV 灵活性的量化维度、设计三级调度目标与衔接机制、适配分层求解算法,实现了三大突破:一是将 EV 从 “不确定性源” 转化为 “柔性调节资源”;二是通过多尺度协调解决了 “长期规划与短期响应脱节” 的问题;三是在提升微网经济性、可靠性的同时,保障了 EV 用户体验。案例验证表明,该框架可降低 17.9% 的运行成本、提升 17.1% 的可再生能源消纳率,为含 EV 集群的微网调度提供了可行路径。
⛳️ 运行结果
🔗 参考文献
[1] 石庆均.微网容量优化配置与能量优化管理研究[D].浙江大学,2012.
[2] 朱永胜,聂彩静,陈斌,等.混合时间尺度下微网群系统多重博弈协同调度研究[J].电网技术, 2023, 47(8):3249-3260.
[3] 王安琪.基于模型预测控制的微网多时间尺度协调优化调度[D].东北大学,2022.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇