TensorFlow图像编码处理

本文介绍了使用TensorFlow进行图像处理的基本方法,包括图像的解码、编码和存储。通过实例展示了如何将JPEG格式的图像转换为三维矩阵并进行操作,以及如何将处理后的图像重新编码并保存。

第一次发blog,记录学习过程,虽有点low,贵在坚持呀!

 

一般处理的图像是RGB色彩模式的图像,可以将其看成一个三维矩阵,矩阵中的每一个数代表了图像上不同位置不同

颜色的亮度。

如何理解呐?图像是二维的,即长和宽,一张图像由这二维平面上无数个点组成,每个点用RGB三通道来表示这个点的颜色。这许多个二维平面上的点就构成我们看到的各种图片啦!

然而,图像在存储时并不是记录这些矩阵中的数字,而是记录经过压缩编码之后的结果。图像还原成三维矩阵形式,需要解码过程。Tensorflow提供了对jpeg和png格式图像的解码/编码函数。以下是示例。

import matplotlib.pyplot as plt

import tensorflow as tf

image_raw_data = tf.gfile.FastGFile("D:/add/41A (2).jpg", "rb").read()

with tf.Session() as sess:
    img_data = tf.image.decode_jpeg(image_raw_data)
    print (img_data.eval())
    plt.imshow(img_data.eval())
    plt.show()

    encoded_image = tf.image.encode_jpeg(img_data)
    with tf.gfile.GFile("D:/add1/123.jpg","wb") as f:
        f.write(encoded_image.eval())    

 

我遇到的问题:UnicodeEncodeError: 'utf-8' codec can't encode character '\udcbe' in position 1856: surrogates not allowed

参考了一下别人的blog。反映最多的是路径名称问题,路径中包含中文什么的,可我的也没有呀!后来再add1文件夹后面随便加个123.jpg。嘿,竟然搞定了。自己果然很菜啊!

效果展示:

上面是打印的三维矩阵的一部分,和打印的图片。

 

上面是按照jpeg格式编码存入D盘add1文件夹下的图像。

详细参考:《TensorFlow实战Google深度学习框架》第二版7.2.1节。

不当之处,欢迎指正!

 

 

 

 

 

 

 

 

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值