第一次发blog,记录学习过程,虽有点low,贵在坚持呀!
一般处理的图像是RGB色彩模式的图像,可以将其看成一个三维矩阵,矩阵中的每一个数代表了图像上不同位置不同
颜色的亮度。
如何理解呐?图像是二维的,即长和宽,一张图像由这二维平面上无数个点组成,每个点用RGB三通道来表示这个点的颜色。这许多个二维平面上的点就构成我们看到的各种图片啦!
然而,图像在存储时并不是记录这些矩阵中的数字,而是记录经过压缩编码之后的结果。图像还原成三维矩阵形式,需要解码过程。Tensorflow提供了对jpeg和png格式图像的解码/编码函数。以下是示例。
import matplotlib.pyplot as plt
import tensorflow as tf
image_raw_data = tf.gfile.FastGFile("D:/add/41A (2).jpg", "rb").read()
with tf.Session() as sess:
img_data = tf.image.decode_jpeg(image_raw_data)
print (img_data.eval())
plt.imshow(img_data.eval())
plt.show()
encoded_image = tf.image.encode_jpeg(img_data)
with tf.gfile.GFile("D:/add1/123.jpg","wb") as f:
f.write(encoded_image.eval())
我遇到的问题:UnicodeEncodeError: 'utf-8' codec can't encode character '\udcbe' in position 1856: surrogates not allowed
参考了一下别人的blog。反映最多的是路径名称问题,路径中包含中文什么的,可我的也没有呀!后来再add1文件夹后面随便加个123.jpg。嘿,竟然搞定了。自己果然很菜啊!
效果展示:
上面是打印的三维矩阵的一部分,和打印的图片。
上面是按照jpeg格式编码存入D盘add1文件夹下的图像。
详细参考:《TensorFlow实战Google深度学习框架》第二版7.2.1节。
不当之处,欢迎指正!