线性时不变系统(LTI)对复指数信号的响应(数字信号处理的特征值与特征函数)

本文探讨了复指数信号作为线性时不变系统(LTI)的基本信号的重要性。复指数信号因其独特的数学性质,在信号处理中占据核心地位。文章详细阐述了复指数信号作为LTI系统的特征函数的性质,并通过实例证明了这一结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载于:https://blog.csdn.net/reborn_lee/article/details/81097037

目录

序言

一类重要的基本信号

线性时不变系统对复指数信号的响应

特征函数以及特征值定义:

证明复指数信号是LTI系统的特征函数

简单运用上述性质


序言

复指数信号有相比于其他信号优良的性质,这使得其在数字信号处理以及信号与系统中(统称为信号处理)具有不一般的地位,例如复正弦信号 x [ n ] = e j w n = c o s w n + j s i n w n x[n]=e^{jwn}=coswn+jsinwn x[n]=ejwn=coswn+jsinwn

它不仅是离散信号做傅里叶变换时的基函数,同时也是线性时不变系统的特征信号。此外,该式子也被称为欧拉恒等式,它的自变量为复数,因为只有在复数域中,三角函数和指数函数才有该恒等关系

看了一下内容后,你就会懂得上面的描述!



一类重要的基本信号

在研究线性时不变系统时,将信号表示成基本信号的线性组合是很有利的,这些基本信号应该满足下面的两个性质:

1、由这些基本信号能够构成相当广泛的一类有用信号;

2、线性时不变系统对每一个基本系统的响应应该十分简单,以使系统对任意输入信号的响应有一个很方便的表达式。

那什么样的基本信号满足上面的条件呢?

由傅里叶分析可知,连续和离散时间复指数信号集都具有上述两个性质,即连续时间的 e s t e^{st} est和离散时间的 z n z^{n} zn,其中s和z都是复数。因为只有定义为复数欧拉恒等式才成立,故不能定义为实数。

线性时不变系统对复指数信号的响应

基于如下事实:

一个线性时不变系统对复指数信号的响应也是同样一个复指数信号,不同的只是幅度上的变化。

连续以及离散时间复指数信号的响应分别是:

其中, H ( s ) , H ( z ) H(s),H(z) H(s),H(z)是复振幅因子,一般来说是复变量s以及z的函数,但是对于变量t来说,它等价于一个常数。

这就说明了,复指数信号经过线性时不变系统的响应是它本身,即同样也是一个复指数信号,只不过幅度上有所变化。

特征函数以及特征值定义:

一个信号,若系统对该信号的输出响应仅是一个常数(可能是复数)乘以输入,则称该信号为系统的特征函数(eigenfunction),而幅度因子称为系统的特征值(eigenvalue)。

证明复指数信号是LTI系统的特征函数

下面证明复指数信号确实是LTI系统的特征函数,也就是说复指数信号作为LTI系统的激励,其响应也是复指数信号。

手稿:

首先是连续复指数信号 x ( t ) = e s t x(t)=e^{st} x(t)=est,求其经过线性时不变系统的输出,假设线性时不变系统的系统函数为 h ( t ) h(t) h(t)

这就证明了连续复指数信号 e s t e^{st} est是LTI系统的特征函数,而常数 H ( s ) H(s) H(s)就是与特征函数 e s t e^{st} est有关的特征值。

下面证明离散复指数信号 x [ n ] = z n x[n]=z^{n} x[n]=zn是LTI系统的特征函数:

同样证明了离散复指数信号 z n z^{n} zn是LTI系统的特征函数,常数H(z)是与特征函数 z n z^{n} zn有关的特征值。



简单运用上述性质

既然,复指数信号作为LTI系统的输入,其输出有这么简便的表示方法,真是造福科学呀!

我们不禁设想如果一个信号都可以表示成复指数信号,那么其输出岂不很简单?事实上也是如此,但多大范围的信号可以用复指数的线性组合来表示呢?

(我们将由这个思路来引出下一篇博文,周期信号的傅里叶级数表示,任意一个周期信号还真能表示成复指数信号的组合形式!)

下面以手稿的形式,展示上面叙述的简单运用(模拟情况):

离散的情况如下:

这其中的 s k , z k s_{k},z_{k} sk,zk都是复数。

这就说明:

对于连续时间以及离散时间来说,如果一个线性时不变系统的输入能够表示成复指数信号的线性组合,那么系统的输出也能够表示成相同复指数信号的线性组合;并且在输出表示式中的每一个系数可以用输入中响应的系数 a k a_{k} ak分别与特征函数 e s k t , z k n e^{s_{k}t},z_{k}^{n} eskt,zkn有关的系统特征值 H ( s k ) , H ( z k ) H(s_{k}),H(z_{k}) H(sk),H(zk)相乘来求得。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值