【RT-DETR改进涨点】更加聚焦的边界框损失Focaler-IoU、InnerFocalerIoU(二次创新)

本文介绍了Focaler-IoU和InnerFocalerIoU两种边界框损失函数,旨在提高目标检测的性能。Focaler-IoU通过线性区间映射关注不同难度的样本,解决困难和简单样本分布问题。InnerFocalerIoU则提供了更多选择,结合Inner参数可实现不同IoU类型的融合。文中还详细阐述了损失函数的使用步骤和适用场景,并提供了代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是更加聚焦的边界框损失Focaler-IoU已经我进行二次创新的InnerFocalerIoU同时本文的内容支持现阶段的百分之九十以上的IoU,比如Focaler-IoU、Focaler-ShapeIoU、Inner-Focaler-ShapeIoU包含非常全的损失函数,边界框的损失函数只看这一篇就够了。

在开始之前给大家推荐一下我的专栏,本专栏每周更新3-10篇最新前沿机制 | 包括二次创新全网无重复,以及融合改进(大家拿到之后添加另外一个改进机制在你的数据集上实现涨点即可撰写论文),还有各种前沿顶会改进机制 |,更有包含我所有附赠的文件(文件内集成我所有的改进机制全部注册完毕可以直接运行)和交流群和视频讲解提供给大家。  

 官方链接:
### 关于RT-DETR模型中改进损失函数的方法 #### 更换为DIoU损失函数 为了提升RT-DETR检测精度,可以考虑采用不同的损失函数来优化边界框回归的效果。具体来说,更换成DIoU(Distance IoU损失函数能够显著改善模型的表现[^1]。 DIoU不仅考虑到预测框与真实框之间的重叠面积比例,还引入了两者中心距离作为惩罚项,从而使得模型更加关注目标位置的准确性。这种设计有助于减少误检率并提高定位精确度,在实际应用中有更好的表现。 #### 多种IoU变体的选择 除了DIoU之外,还有其他几种基于交并比(IoU)概念发展而来的损失函数可供选择,比如SIoU、GIoU、CIoU以及WIoU等。这些不同类型的IoU损失各有特- **GIoU (Generalized Intersection over Union)**: 扩展传统IoU定义范围至最小外接矩形区域; - **DIoU**: 增加了两个边界的欧几里得距离因子; - **CIoU (Complete Intersection Over Union)**: 结合尺度不变性纵横比一致性因素; - **SIoU (Symmetric Distance-based IoU Loss)** **WIoU (Weighted IoU)** : 提供额外特性支持特殊应用场景需求; 通过对比实验发现,在大多数情况下,上述方法均能不同程度地促进RT-DETR训练过程中的收敛速度及最终测试集上的mAP指标得分[^2]。 #### 使用MPDIoU增强边界框回归准确性 另一种有效的策略是利用MPDIoU(Multi-Perspective Distance IoU),这是一种综合考量多视角下物体间相对位姿关系的新颖损失形式。它旨在进一步强化对于复杂场景中目标检测任务的支持能力,特别是当面对遮挡严重或者姿态变化较大的实例时表现出色[^3]。 ```python import torch.nn as nn class CustomLoss(nn.Module): def __init__(self, loss_type='diou'): super(CustomLoss).__init__() self.loss_fn = { 'giou': GIoULoss(), 'diou': DIoULoss(), 'ciou': CIoULoss() }[loss_type] def forward(self, pred_boxes, target_boxes): return self.loss_fn(pred_boxes, target_boxes) # Example usage during training loop criterion = CustomLoss(loss_type='diou') output_loss = criterion(predictions, targets) ```
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值