- 博客(230)
- 收藏
- 关注
原创 分享十款帮助职场人士提高办公效率的免费AI工具
提高办公效率并不能只依赖埋头苦干。在通常情况下,“巧干胜于蛮干”。因此,为了持续领先,关键在于融合个人才智、专注投入,以及高效应对日常挑战的方案。值得庆幸的是,人们如今身处人工智能时代,无论完成什么档的工作或任务,都有大量的解决方案可供选择。使用过人工智能工具的人都知道,它们可以轻松地帮助他们完成原本耗费数小时的繁琐工作。本文将介绍一些免费的人工智能工具,可以帮助职场人士提高办公效率。
2025-07-16 10:25:49
505
原创 软件集成的演变:MCP如何在传统API之外重塑AI开发
作为软件工程师,我们耗费数年时间钻研API集成技艺,攻克了表述性状态传递(REST)端点难题,调试了身份验证流程,并构建了无数适配器以实现不同系统间的互联互通。然而,随着人工智能从实验性技术转变为生产必备要素,我们正见证软件系统通信方式的根本性变革。
2025-07-14 11:52:43
624
原创 深度学习中的批处理vs小批量训练
在每个训练步骤中,整个数据集会被一次性输入到模型中,这一过程称为批处理(又称全批量梯度下降)。图3 深度训练中的批处理使用整个数据集来计算梯度。每个epoch仅包含一次前向传播和反向传播。内存占用率高。每个epoch通常较慢,但收敛过程稳定。当数据集可完全载入物理内存时(内存适配)。当处理小型数据集时。小批量训练是全批量梯度下降与随机梯度下降之间的折衷方案。它使用数据的一个子集或部分,而不是整个数据集或单个样本。
2025-07-10 18:49:22
978
原创 建立基于AI的知识体系:面向企业需求的LlamaIndex与Apache Tika
LlamaIndex是我们通往智能数据的AI桥梁,能够组织各类文件内容、降低访问门槛。从获取前沿洞察到保存机构知识,Tika与LlamaIndex这对组合有望帮助组织机构充分释放其数据潜力。
2025-07-09 11:00:00
638
原创 容器化人工智能:使用Docker和Kubernetes部署机器学习模型的实践指南
容器化将应用程序打包为轻量级、可移植的单元。对于机器学习(ML)来说,这确保了环境的可重复性和易于部署。例如,容器将机器学习模型代码与其确切的依赖项捆绑在一起,因此其结果可以在不同机器上保持一致,它们可以在任何Docker主机或云平台上运行,从而提高了可移植性。通过学习这一实践指南,用户将了解如何使用Docker将机器学习模型实现容器化,并使用Kubernetes在AWS EKS上进行部署,轻松构建、提供服务并扩展其模型。容器化将应用程序打包为轻量级、可移植的单元。
2025-07-08 11:00:00
718
原创 十步构建智能应用:RAG从原型到生产的全链路解析
本文描述的10个步骤强调了构建高级RAG应用程序不仅仅是检索几个相关的上下文块的问题。这是一项必须根据特定领域及其独特要求进行定制的服务——强调没有一刀切的解决方案。这是因为文档类型多样,并且每个领域都有不同的特定需求。通过遵循本文概述的10个步骤,在开发RAG应用时,人们可以从基本原型转变为可以投入生产的服务,从而以可靠、可扩展和智能的方式真正帮助终端用户。
2025-07-07 10:04:52
928
原创 苹果自研AI被爆失败,人工智能时代完全落后于谷歌,未来该何去何从?
从目前种种迹象来看,Siri 正在“换脑” Claude 或 ChatGPT 已是大势所趋。有网友直言不讳:苹果应该感到尴尬和羞耻,同样是大厂被谷歌甩出去太远了。但也有声音为苹果辩护,一位曾在苹果实习的网友表示,这种差距正是因为科技公司生态位的区别,硬件比软件更难做:“主要障碍并非是苹果的技术不够硬,而是隐私和安全的问题很大程度上拖慢了苹果AI的进展,涉及到个人设备的利害关系太难平衡了”。也有人表示,既然微软可以借力,那么苹果为什么不行呢?
2025-07-05 11:00:00
523
原创 HTTP/3如何击败了HTTP/2?
目前,HTTP/3已面市,它并非单纯的升级,而是对用户数据报协议(UDP)的重新设计。下面,让我们来详细了解真实用户的使用感受,以及广泛的互联网性能监控。如果你关注数据传输的性能、可靠性、以及在为移动应用布局的话,是时候测试和启用HTTP/3了。由互联网工程任务组(IETF)于2015年正式发布下一代HTTP协议--HTTP/2,旨在解决当时HTTP/1.1协议存在的性能瓶颈问题,提升网络传输效率。不过,尽管HTTP/2有着诸多承诺,但网络延迟与抖动仍存在于现实的网络世界中。
2025-07-04 11:00:00
897
原创 一文详解Character AI:实用指南+ ChatGPT、Gemini对比分析
Character AI是一个基于网络的平台,用户能够在此与人工智能生成的各类角色进行互动,这些角色涵盖虚构形象以及运动员、作家、历史名人等公众人物。每个角色均具备独特的个性特点与语言风格,从而实现模拟特定人物特征的对话交流。与ChatGPT或Gemini等通用型聊天机器人不同,Character AI以基于角色的对话为核心进行架构设计。这种设计模式使得用户能够参与角色扮演、故事创作、问答互动或日常闲聊等多样化场景,且对话内容通常会依据所选角色的个性特点进行定制。
2025-07-03 09:51:20
818
原创 甭提静态AI了,MIT新框架让模型具备自学能力
研究人员补充道,自然的下一步是元训练专门的SEAL合成数据生成器模型,从而生成新颖的预训练语料库,使未来模型能够扩展,并在不依赖额外人类文本的情况下实现更高的数据效率。近日,麻省理工学院(MIT)的研究人员已开发出一种名为自适应语言模型(SEAL)的框架,使大语言模型(LLM)能够通过更新自身的内部参数来持续学习和适应。专门的教师模型经过训练后,可以为单独的学生模型生成有效的自编辑,然后更新该学生模型。在自编辑阶段,模型不得不生成整套的适应策略,包括使用哪些数据增强和工具、运用什么样的学习率。
2025-07-02 11:00:00
829
原创 今天和大家分享一下分布式机器学习的五大流行框架
我使用过本文中提到的几乎所有分布式计算框架,但我主要使用PyTorch和TensorFlow 进行深度学习。这些框架只需几行代码,就能非常轻松地跨多个GPU扩展模型训练。我个人更喜欢PyTorch,因为它的API直观易用,而且我对它比较熟悉。所以,我认为没有必要换成新的框架。对于传统的机器学习工作流程,我依赖Dask,因为它轻量级,且采用Python原生方法。最适合大规模深度学习工作负载,尤其是在你已经在使用这些框架的情况下。非常适合构建采用分布式计算的现代机器学习管道。
2025-07-01 11:00:00
1204
原创 MCP或将成为AI界的HTTP
MCP,又名AI模型上下文协议,是AI模型与外部工具和应用通信的标准化方式。和HTTP、以及TCP等其他协议类似,它是一种协议、一种通信方式、也是一套规则。MCP客户端:主要使用模型上下文协议与MCP服务器对话。你可以将其视为一种工具,可用来启动与MCP服务器的连接,与支持MCP的AI模型进行交互。MCP服务器:主要处理来自AI模型(即MCP客户端)的请求,并将其映射到服务器中预定义的适当任务中。也就是说,MCP服务器定义了AI模型在服务器与工具上执行哪些操作,以及它可以访问哪些资源。
2025-06-30 11:00:00
812
原创 三大AI超能力:分类式AI、预测式AI和生成式AI
离散输出。分类式AI聚焦于处理诸如垃圾邮件与非垃圾邮件、猫与狗、积极情绪与消极情绪等界限清晰的类别。其核心任务在于判定新的数据片段应归属于哪一个既定的类别范畴或被赋予何种标签。监督学习和标记数据。大多数分类模型需要标记训练数据来学习类别之间的差异。例如,你可以给它“喂”成千上万的猫和狗的标记图像,模型借此筛选出能够界定动物为“猫”或“狗”的视觉特征。特征提取。在实践中,分类式AI通常涉及从原始数据中识别或设计特征(例如,图像中的像素值、文本中的单词频率)。这些特征帮助模型区分不同的类。
2025-06-29 11:00:00
1208
原创 从OCR瓶颈到结构化理解来有效提升RAG的效果
当人们探讨如何让人工智能系统更好地从文档中查找和使用信息时,通常关注的是令人瞩目的算法和前沿的大型语言模型。但问题是:如果文本提取的质量很差,那么后续的努力都将付诸东流。本文探讨OCR质量如何影响检索增强生成(RAG)系统,尤其是在处理扫描文档和PDF文件的常见场景时。OCR错误在RAG流程中级联,将严重影响人工智能系统的性能。拥有2.56亿个参数的SmolDocling能够实现对文档的整体化处理,进而生成结构化输出,有效提升了RAG的效果。
2025-06-28 18:00:00
629
原创 开发者值得关注的六大AI调试工具
AI调试工具标志着软件开发工作流程的重大进步。它们利用人工智能实时识别异常、提出修复建议,甚至自动纠正代码问题。这些工具能够显著缩短调试时间,同时提升整体代码质量和开发者效率。
2025-06-28 11:00:00
700
原创 分享七大免费 AI 图像生成器:哪款工具更胜一筹呢?
本文将介绍我个人使用过的七大工具以及各自的优缺点,最后根据你的需求使用哪款工具。如今 AI 无处不在,傻瓜才不用它来生成图像。无论是为你的在线博客、社交媒体渠道还是仅仅是生日派对邀请函创建内容,AI 都能让图像生成变得超级简单快捷。更重要的是,一些最好的 AI 图像生成器完全免费。所以,赶紧来试试吧,开始制作你梦寐以求的完美图像!然而,该使用哪款 AI 图像生成器工具呢?
2025-06-27 11:00:00
580
原创 全面比较帮你确定何时选择SLM而非LLM
技术帮助我们以更少资源达成更多目标。它始终是推动者而非驱动者,从蒸汽机时代到互联网泡沫,技术的核心价值在于解决问题的能力。和近期的也不例外!如果传统机器学习模型足以胜任某项任务,就无需使用输出难以解释的深度学习模型。也是如此,更大并不意味着更好。本文将帮助你判断何时应为特定问题选择小语言模型(SLM)而非大语言模型(LLM)。
2025-06-26 14:30:00
777
原创 关于AI区块链的一切:哪些是真,哪些是假?
区块链的不可篡改性可以确保驱动AI系统的数据始终完整且可信,而AI则能够为基于区块链的系统带来更强的自动化与智能化表现。像谷歌、OpenAI和微软这样的AI厂商可能会对我们的社会和生活产生巨大影响,并在消灭大量现有工作岗位的同时、将AI系统创造的所有收入归为己有。这为更健康的创作者经济生态铺平了道路,人们可以为AI模型创建专门的数据集,并将其托管在区块链上,从而保证自己的贡献拥有充分的归属和奖励。然而,AI的普及以及人们对这项技术的日益依赖,也引发人们对其底层基础设施的中心化趋势、以及相关风险的质疑。
2025-06-25 11:00:00
1114
原创 多模态LLM+RAG:突破生成瓶颈的下一代AI架构革命
多模态大型语言模型(MLLM)正在突破传统检索增强生成(RAG)的文本局限,通过整合图像、音频等数据赋予AI感知能力。其核心架构利用CLIP、Whisper等编码器实现跨模态语义统一,并通过投影层对齐多模态信息。典型应用包括视觉问答、音频转录等场景,显著提升AI对物理世界的理解能力。评估MLLM需要综合考量检索质量、生成忠实度和跨模态一致性等指标。尽管技术挑战仍存,但MLLM正推动AI向更自然的人机交互方向发展,为医疗诊断、工业检测等领域带来革新可能。
2025-06-24 11:00:00
1623
原创 当心:AI 真的在抢你的工作!
你也许是被本文的标题吸引进来,而且感觉不寒而栗。这实际上是全球性的自由职业在线平台 Fiverr 的 CEO 在给其全体员工的一封电子邮件中,所描述的一个严酷事实。而且这并非个案。就在过去的几个月里,我们看到了 Microsoft、Duolingo、Shopify 等公司发布了一波又一波令人不安的公告。所有这些都指向同一个趋势:AI 不再只是协助人类完成工作的工具,而且是取代人类工作的代理“大杀器”。你是否还认为AI自动化只会影响工厂里的工人、机器操作员或是客户服务人员呢?
2025-06-23 18:08:07
608
原创 OpenAI揭示o3的推理过程,以弥合与DeepSeek-R1的差距
o3-mini的成本极具竞争力,输出每百万令牌仅需4.40美元,远低于o1的60美元,与此同时,它在多个推理基准测试中的表现还优于o1。例如,在一个失败的实验中,DeepSeek-R1的CoT帮助开发人员发现问题不在于模型本身,而在于获取数据的检索组件(这种问题在实际应用中经常发生)。OpenAI公司最近进行的更改展示了CoT的更详细版本,但并没有揭示原始的推理令牌,这让OpenAI公司在增强透明度和保护其核心竞争力(如果有的话)之间取得了巧妙的平衡。测试结果表明,这种新提供的详尽的CoT极具价值。
2025-02-20 12:00:00
600
原创 如何运用DeepSeek R1构建一款全栈简历筛选应用
我们的目标是构建一款简历分析器应用,快速把握上传简历中的基本信息与申请者的优缺点。DeepSeek R1大模型负责分析上传的简历并提供反馈。架构示意图用户界面由React开发,通过REST API与基于NodeJS的后端进行通信。之后,NodeJS后端将用户请求发送至由Ollama托管的DeepSeek R1。整个技术栈可在单一设备上运行,亦可跨多个容器托管以支持更复杂的用例。DeepSeek R1让我们拥有了以纯本地方式构建生成式AI驱动应用的能力,并可根据实际需求进行灵活自定义。
2025-02-18 12:00:52
1097
原创 如何将微服务体系结构运用于嵌入式系统?
在深入讨论将MOA运用于嵌入式系统的细节之前,不妨先大致了解这种体系结构的基本要素。面向微服务的体系结构旨在将应用程序的行为分解为一群独立存在但一致行动的离散服务。MOA的工作方式是将离散服务分发到众多远程位置。通常,这些服务使用一种众所周知的传输协议(比如TCP、UDP或HTTP)发送和接收数据。某种类型的组织、前端客户端机制(比如在桌面或移动设备上运行的网页或原生代码)将各种服务聚集在一起,形成整个应用程序的统一表示。然而如前所述,组成MOA的每个服务都是远程托管的。
2024-07-31 12:00:00
647
原创 如何优化PyTorch以加快模型训练速度?
PyTorch是当今生产环境中最流行的深度学习框架之一。随着模型变得日益复杂、数据集日益庞大,优化模型训练性能对于缩短训练时间和提高生产力变得至关重要。本文将分享几个最新的性能调优技巧,以加速跨领域的机器学习模型的训练。这些技巧对任何想要使用PyTorch实现高级性能调优的人都大有帮助。
2024-07-30 12:00:00
1221
原创 人工智能在低代码和无代码开发中的积极作用
人工智能增强低代码和无代码平台有几种重要的方法,人工智能具有从自然语言提示或代码编辑器中的场景生成代码片段的能力。开发人员可以使用像ChatGPT和Gemini这样的LLM来为许多低代码平台生成代码,而像AppSmith和Google AppSheet这样的无代码平台则使用人工智能来基于描述想要集成的内容的文本生成集成。使用的任何人工智能技术都需要适当的训练和全面的治理。因此,尽管人工智能工具降低了新手开发人员的入门门槛,但在将代码部署到生产环境之前,仍然需要有经验的程序员来审查、验证和测试代码。
2024-07-29 10:00:00
874
原创 文本为王:如何在序列推荐过程中学习语言向量
随后在 2006 年,因为 Netflix 推荐系统大赛的缘故,基于矩阵分解的推荐系统被发明出来。从 2016 年开始,基于深度学习的推荐算法后来居上,一举占据了包括 RecSys 在内的各大学术会议的显要位置,给推荐系统领域带来了一场彻底的革命。一直到最近,仍然有研究者发问称对比了大量的推荐算法,发现基于物品的协同过滤性能优异,吊打其他算法。图一中显示了这篇文章中的算法利用的输入数据与其他算法的不同:物品不再是由物品 ID 唯一表示的数字,而是一个键值对构成的数据集合。最后,我们对算法做两阶段微调。
2024-07-28 17:30:00
381
转载 如何使用AI帮助开发者处理正则表达式
不知你是否听说过由人工智能(AI)来生成正则表达式(Regex)。这是一个有趣的领域,鉴于人工智能在文本分析方面优异的表现,它们足以开始“整理”各种现有表达式工具了。作为开发人员,我们可能更希望将人工智能作为开发系统的一部分,从日常自己的工作流中提取信息,生成表达式,而不是停留在被动地接受由OpenAI等公司提供的所谓以用户为中心的平台方案的层面上。下面,我将从正则表达式的生成原理说起,向你介绍两款可供免费使用的此类工具。
2024-07-28 10:00:00
984
1
原创 如何通过压缩提示降低GPT-4的成本
如果使用得当,LLMLingua可以降低使用高级LLM的成本,并使更广泛的用户和应用程序可以使用LLM。像GPT-4和Claude这样的大型语言模型(LLM)可以通过良好的提示工程学习新任务。然而,较长的提示会增加使用这些模型的成本,并且还会减慢它们的运行速度。LLMLingua是微软公司开发的一项新技术,通过消除无关部分来压缩提示。值得注意的是,LLMLingua可以在不影响模型响应质量的情况下将提示的规模压缩高达20倍。
2024-07-27 12:21:44
484
原创 多模态AI:概念、用例、优势、挑战及发展未来
在少数情况下,模型是“原生多模态”的——专门为处理多种数据类型而构建的——Embedding通过一个称为“早期融合”(Early Fusion)的过程同时发生,该过程将来自每种模态的原始数据组合、对齐和处理,使它们都具有相同(或相似)的数学表示。然而,这种方法的实现并不容易,这就是为什么目前存在的许多多模态系统都需要在后期通过一个称为“后期融合”(Late Fusion)——即在每种类型的数据分别进行分析和编码之后——的过程合并来自多个模态的信息。多模态AI系统可以处理比单模式AI系统更广泛的任务。
2024-07-21 20:00:00
1429
原创 深度学习模型中的知识蒸馏是如何工作的?
深度学习模型在多个领域,特别是计算机视觉和自然语言处理中,已经取得了革命性的进展。然而,随着模型复杂性和资源需求的不断攀升,如何将这些庞大模型的知识浓缩为更紧凑、更高效的形式,成为了当前研究的热点。知识蒸馏,作为一种将知识从复杂模型转移到更简单模型的策略,已经成为实现这一目标的有效工具。在本文中,我们将深入探究深度学习模型中知识蒸馏的概念、原理及其在各领域的应用,以期为读者提供一个全面而严谨的视角。
2024-07-21 14:30:00
1033
原创 探究大语言模型(LLM)漏洞和安全优秀实践
你可能已听说过LLM强势亮相,至少ChatGPT就是代表。大语言模型(LLM)指语言处理模型。这类模型经过训练,可以执行各种各样的语言任务:翻译、文本生成和问题回答等。有几个LLM家族和架构,最著名的是GPT(生成式预训练Transformer)。每种 LLM都有各自的特定功能,但本文侧重介绍LLM普遍固有的安全问题。随着越来越多的公司集成LLM以增强用户体验或简化和加速内部流程,这种类型的集成特有的新漏洞随之出现。
2024-07-21 09:33:28
2173
原创 揭开危险的面纱:人工智能可能失控的十种方式以及如何识别
大型语言模型带来了操纵、网络攻击和无意的自我完善等风险,而保护措施正在开发中。大型语言模型(LLM)的快速发展激发了人们的广泛兴趣,也带来了一些风险,虽然它们的潜力巨大,但滥用和意外后果的可能性也很大。了解这些强大的人工智能系统带来的风险对于制定有效的保障措施至关重要。以下是人工智能和LLM可能失控的10种方式,重点介绍了风险、可能性、检测方法和潜在的保护策略。
2024-07-18 10:00:00
1310
1
原创 Meta公司开源大数据模型SAM实战演练
本文描述的内容代表了即将发表的论文的精简版和一个更易于实现的版本。在本教程中,我们将介绍第一种方法,即冻结图像和提示编码器,只训练掩码解码器,但这种替代方法的代码可以在AutoSAM GitHub(https://github.com/talshaharabany/AutoSAM/blob/main/inference.py)和论文(https://arxiv.org/pdf/2306.06370)中找到。假设在河流的任何图像中,水体将从图像的一端延伸到另一端,任何包含的边界框几乎总是覆盖图像的大部分。
2024-07-17 17:30:00
1201
原创 黑客入侵OpenAI,细节一年后才公开,三类数据资源让AI公司成为活靶子
黑客与公司数据之间,是一场永无止境的猫鼠游戏,讽刺的是,现在这场游戏正被AI本身大大加速:代理和攻击自动化程序正在探查这些公司每一个角落和缝隙的攻击面。我们没有理由惊慌——拥有大量个人或商业价值数据的公司多年来一直面临并管理着类似的风险。但AI公司代表了一个更新、更年轻、潜在更有吸引力的目标,比你常见的配置不良的企业服务器或不负责任的数据经纪人更具吸引力。即使是像上面报道的那样的黑客攻击,据我们所知没有严重的数据泄露,也应该让任何与AI公司有业务往来的人感到担忧。
2024-07-17 10:00:00
1018
原创 不妨一试!这六种在智能手机上运行的开源LLM
这表明,虽然该模型可以在6GB以上内存的设备上运行,但拥有更大的内存可以获得更好的性能,并降低内存不足错误的风险。Falcon-RW-1B-Chat模型旨在为Falcon-RW-1B-Instruct-OpenOrca模型增加会话功能,以提高用户参与度、扩大使用范围,并为智能手机等资源受限的环境提供可访问性。虽然LLaMA-2-7B模型需要设备有足够的内存,其速度可能无法与基于云的模型相匹配,但它为希望创建直接在智能手机上运行的基于语言的智能功能的开发人员提供了一个诱人的选择。
2024-07-16 18:28:15
508
原创 马斯克打算为特斯拉量身定制一个ChatGPT
ChatGPT在互联网上引起轰动后不久,2022年12月,特斯拉的帕洛阿尔托总部也在进行类似的开发。该公司自动驾驶系统的工程师达瓦尔·施罗夫向首席执行官埃隆·马斯克提出了一个概念。施罗夫提出了一个专为汽车量身定制的类似于ChatGPT的系统。他们的目标不是依靠预定义的规则来确定汽车的最佳路径,而是使用从大量训练数据中学习的神经网络。拥有十年经验的特斯拉团队经验丰富的成员Shroff解释说,这些数据包括数百万个人类驾驶行为的例子。
2024-03-25 17:30:00
820
原创 生成式AI将在十个方面改变软件开发
上个世纪90年代,当人们提起软件编程时,通常意味着选择一个编辑器,将代码检入CVS或SVN代码库,然后将代码编译成可执行文件。与之对应的Eclipse和Visual Studio等集成开发环境(IDE)可以将编程、开发、文档、构建、测试、部署等步骤纳入到一个完整的软件开发生命周期(SDLC)中,从而提高了开发人员的工作效率。近年来,流行的云计算和DevSecOps自动化工具提升了开发者的综合能力,使得更多的企业能够更加轻松地开发、部署和维护软件应用。
2024-03-25 12:00:00
1288
原创 人工智能对抗人工智能:利用人工智能来检测深度造假和网络钓鱼
在当今的数字时代,深度造假技术和语音网络钓鱼策略的激增,给数字通信的真实性和安全性带来了重大挑战。深度造假者操纵音频和视频,创造出令人信服的假冒内容,而深度造假者则利用语音模拟来欺骗个人,以泄露敏感信息。准确识别和减轻这些威胁对于保护个人和组织免受错误信息、欺诈和身份盗窃的潜在后果至关重要。
2024-03-25 08:00:00
698
原创 你虽然不一定用得到但一定要知道的ChatGPT五大功能
这有点像浏览器中的隐身或私密模式。如果你邀请试用 ChatGPT 的人被信用卡注册吓退了,你可以与他们分享你的 ChatGPT 对话。ChatGPT的自定义指令可以从关于你的生活、业务或其他方面的详细信息,到简单的指令,例如确保它只使用英制单位或始终在回复中使用你的名字。然而,当它到来时,对于那些你想问 ChatGPT 的问题但不想让它永远与你的用户资料有关联时,它将是一个有用的工具。但这还不是全部,随着时间的推移,它的记忆可以改进,学习关于你的细节并添加到记忆中,并基于此提供更精准的能力。
2024-03-24 20:57:12
1158
原创 值得一试的五大AI编程助手
基于AI的编程助手正通过提高程序员的效率和生产力来改变软件开发。本文介绍了我认为任何从事代码逻辑、格式化和测试工作的人都应该使用的五大AI编程助手。将上述其中一款助手集成到工作流程中可以提高工作效率,生成和理解代码,更快速地解决问题,并更专注于编程。最终,这些AI助手让开发人员可以花更少的时间来处理代码,进而开发令人惊叹的软件。不妨在您的下一个项目中尝试一下。
2024-03-02 21:30:00
1429
基于AMR6818的车载系统,功能有天气预报、视频播放、音乐播放、计时器,编辑环境及语言:Qt和C++.zip
2023-11-25
使用 Qt 构建、C++ 作为底层开发的学生成绩管理系统,支持对学生成绩的增删改查、排序、汇总等功能.zip
2023-11-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人