自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(9)
  • 收藏
  • 关注

原创 用 Trae AI Vibe Coding 写一个 AI 智能体

前言代码识别成果展示开发反思与洞见未来演进方向结语:新范式革命在初步学习了 Langchain 的基础知识后,我产生了一个大胆的想法:能否完全不写代码,仅靠 AI 直接生成一个完整的智能体系统?这个想法最终催生了Agent-Zero- 一个完全由 AI 生成的智能体框架。万万没想到真的给我实现了, 弄了一个 Agent-Zero 的简易版本,全程一个代码都没有写,准确的来说我可能还有很多代码不知道什么意思。

2025-06-26 16:28:55 582

原创 Langchain × FastAPI × Uvicorn:构建高性能AI服务三驾马车

技术栈定位FastAPI:AI服务的极速引擎核心优势Langchain集成示例Uvicorn:高性能的ASGI服务器为何选择Uvicorn?启动配置示例三组件协作架构异步处理最佳实践故障排除指南三组件版本兼容表总结:黄金三角的价值大家好我是太阳鸟,在弄完Langchain 的后台服务后如果需要前端调用那么就需要将服务开发弄成 web 服务、 搭建接口, 发现在 Python 里面有 几个轻量级的插件 FastAPI + Uvicorn 可以快速搭建 API 网关 和 API 文档服务.开发效率。

2025-06-26 16:18:05 951

原创 用 Trae AI Vibe Coding 写一个 AI 智能体

摘要: 本文介绍了一个完全由AI生成的智能体框架Agent-Zero的开发实践。该项目通过AI辅助实现了零代码构建智能体系统,包含基于FastAPI的后端、React前端及核心功能(实时交互、提示词管理、结果可视化)。开发过程揭示了AI编程的关键:清晰的模块化描述和迭代优化能力,但也暴露了生成代码可读性和调试的挑战。未来方向包括扩展知识库、多模态支持及智能体协作网络。这一实践表明,AI工程化时代,开发者正从"编码者"转型为"系统架构师",人机协作的新范式已初步成型。

2025-06-26 16:01:06 831

原创 用MySQL MCP 优化 SQL实战

最近几天都在优化之前的 SQL,一看 SQL 都是 5-6 个表连表还有各种子查询,看起来主打一个头大。正常的优化思路心路历程分享一下: 首先是查看每一个表的数据,根据表数据查询是否存在合理,然后根据数据量进行连表查询,由少到多的一个过程,尽可能减少表的行数,然后再根据对应的数据是否有索引覆盖。为什么要用 MCP?因为用 MYSQL MCP 可以减少自己对于字段的识别和查询,以及索引是否覆盖。

2025-06-25 11:50:14 1021

原创 Python 的环境——Anaconda 安装与使用指南

Anaconda 就是 Python 的“旗舰安装版”!比官网安装更稳、更快、更简单!

2025-06-24 18:56:25 476

原创 LangGraph 和 LangChain 的区别

摘要: LangGraph是LangChain的补充框架,专为编排复杂、有状态的LLM工作流设计。与LangChain的线性链式结构不同,LangGraph支持图拓扑、条件分支和循环逻辑,适合多智能体协作或多阶段决策场景。LangChain提供标准化组件(如RAG),而LangGraph则灵活编排这些组件,两者常协同使用。选择依据:简单任务用LangChain快速实现;需灵活控制流或状态管理时,用LangGraph构建高级工作流。文中对比了架构、代码风格及典型用例,并展示组合使用的示例。

2025-06-24 13:27:43 870

原创 LangChain与Embeddings技术:构建高效RAG系统的核心组件

LangChain作为热门RAG框架,结合Embeddings技术构建智能应用。文章介绍了LangChain的核心功能、Embeddings技术原理,对比了Word2Vec、BERT等主流模型,并展示了LangChain如何集成不同Embedding接口。实践部分详细演示了基于本地文档构建问答系统的完整流程,包括数据预处理、Sentence-Transformers嵌入、Chroma向量存储及LangChain流程编排。该系统可实现高效语义检索和智能问答,体现了RAG框架在实际应用中的价值。

2025-06-23 16:14:24 1127

原创 LangChain + DeepSeek 详解

本文介绍了LangChain框架的基础使用与核心功能。作为AI应用开发工具,LangChain通过标准化接口连接LLM与外部系统,包含Prompt模板、LLM模型、代理和记忆系统四大组件。文章详细演示了Python环境下的安装配置流程,包括向量数据库初始化、DeepSeek模型适配和对话链构建。重点解析了流式输出处理技术,对比了不同调用模式的性能差异,并给出生产环境下的优化建议(如错误重试、超时设置和监控集成)。该框架采用模块化设计,支持快速原型开发,适合构建可扩展的智能应用,但需要注意内存向量库的临时性特

2025-06-20 16:58:43 844

原创 GitHub 14.2k Star 开源神器:Bolt.new——自然语言编程颠覆全栈开发!

• 智能拆解需求:输入“做一个计算器页面”,自动生成HTML/CSS/JS三件套并配置Vite。• 多技术栈支持:Vue、React、Next.js、SpringBoot等主流框架全覆盖。Github 开源无代码的 Web 数据提取平台,2分钟内训练机器人自动抓取网页数据。• 模板生态:内置Astro博客、Vitepress文档等模板,3分钟搭建完整项目。• 错误自修复:AI实时检测代码问题并提供修复方案,减少80%调试时间。• 实时协作:团队成员可通过链接共同编辑,修改记录自动同步。

2025-04-13 18:42:14 443

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除