
DeepSeek学习入门
文章平均质量分 75
DeepSeek学习笔记
鹿鸣天涯
越努力,越幸运
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
DeepSeek-V3新版本DeepSeek-V3-0324
一是新版本代码能力显著提升,接近Claude 3.7水平。中国人工智能初创公司深度求索(DeepSeek)2025年3月24日深夜低调上线了DeepSeek-V3的新版本DeepSeek-V3-0324,参数量为6850亿,在代码、数学、推理等多个方面的能力再次显著提升,甚至代码能力追平美国Anthropic公司大模型Claude 3.7。对于DeepSeek-V3-0324的关注并不仅仅因为该版本的能力提升,而是猜测它的发布是否意味着DeepSeek更新一代的V4与R2大模型的发布不远了。原创 2025-03-28 16:12:53 · 322 阅读 · 0 评论 -
大模型工具Ollama存在安全风险
3、攻击者可利用Ollama框架历史漏洞(CVE-2024-39720/39722/39719/39721),直接调用模型接口实施数据投毒、参数窃取、恶意文件上传及关键组件删除等操作,造成模型服务的核心数据、算法完整性和运行稳定性面临安全风险。2、数据泄露:通过特定接口可访问并提取模型数据,引发数据泄露风险。1、未授权访问:未授权用户能够随意访问模型,并利用特定工具直接对模型及其数据进行操作,攻击者无需认证即可调用模型服务、获取模型信息,甚至通过恶意指令删除模型文件或窃取数据。原创 2025-03-04 10:19:02 · 1650 阅读 · 0 评论 -
deepseek本地部署:deepseek-r1-distill-llama-70b应用实践
近年来,大型语言模型(LLM)的快速发展为企业数字化带来了前所未有的机遇。然而,中小企业在使用诸如 GPT-4 这类云端大模型服务时,往往面临数据隐私、使用成本和网络依赖等方面的挑战。本地化部署大型模型成为一种趋势:将模型部署在企业自己的服务器上,数据不出内网,既保证了敏感信息的安全,又能根据企业需求对模型进行定制优化。是一款备受关注的开源大语言模型,参数规模高达 700 亿。作为DeepSeek系列的高性能版本,它在多个基准测试中表现出色。原创 2025-03-04 09:42:15 · 2121 阅读 · 0 评论 -
DeepSeek本地部署详细指南
通过上述步骤,你可以在本地成功部署DeepSeek模型,并通过Ollama或Open Web UI与模型进行交互。如果你在部署过程中遇到任何问题,可以在评论区留言,我们将一起解决。DeepSeek作为一款开源且性能强大的大语言模型,提供了灵活的本地部署方案,让用户能够在本地环境中高效运行模型,同时保护数据隐私。安装完成后,访问 http://localhost:3000,选择deepseek-r1:latest模型即可开始使用。模型下载超时:如果在下载模型时出现超时问题,可以尝试重新运行下载命令。原创 2025-03-04 09:31:24 · 526 阅读 · 0 评论 -
DeepSeek R1学习入门
Dify 是 LLM 应用开发平台,不完全是可视化界面,可以快速构建 LLM 应用(RAG、AI 代理等),提供 API,可用于应用集成,支持 MongoDB、PostgreSQL 存储 LLM 相关数据, AI SaaS、应用开发,需要构建智能客服、RAG 应用等,类似的工具也有 AnythingLLM 可根据用户偏好进行选择使用。完整版性能强大,但需要极高的硬件配置;deepseek-r1:7b-qwen-distill-q4_K_M:7B 模型的蒸馏+量化版本,显存需求从 5GB 降至 3GB。原创 2025-03-04 09:21:25 · 1000 阅读 · 0 评论 -
DeepSeek-R1本地部署简易操作实践教程
DeepSeek R1 是一款开源的AI模型,它与 OpenAI 的 o1 和 Claude 3.5 Sonnet 等顶级模型竞争,特别是在数学、编程和推理等任务上表现出色。它是免费的、私密的,并且支持在本地硬件上离线运行。DeepSeek R1 提供了多个版本,涵盖从轻量级的1.5B参数模型到功能强大的70B参数版本。从技术角度来看,它基于 Qwen 7B 架构,经过精简和优化,确保在保持强大性能的同时,提升了运行效率。原创 2025-02-20 16:17:58 · 858 阅读 · 0 评论 -
DeepSeek本地部署硬件配置要求
目前最新的 DeepSeek-R1 提供了多个蒸馏后的参数模型,包括有:1.5b、7b、8b、14b、32b、70b,以及满血版 671b 大模型。以下是不同参数量模型的本地部署硬件要求和适用场景分析。注:部分数据基于模型通用需求推测,具体以实际部署测试为准。针对不同规模模型的通用硬件配置建议。原创 2025-02-20 17:28:32 · 2175 阅读 · 0 评论 -
DeepSeek开源周第三天:DeepGEMM高性能通用矩阵乘法库
DeepSeek表示,DeepGEMM在Hopper GPU(一种英伟达GPU架构)上最高可达到1350+FP8TFLOPS(每秒万亿次浮点运算),并且像教程一样简洁,可完全即时编译,其核心逻辑只有约300行代码,且在大多数矩阵尺寸上均优于专家调优的内核,并支持密集布局和两种MoE布局。2月26日,DeepSeek进行了其开源周第三日的发布——DeepGEMM,一个支持密集和MoE(专家混合模型)GEMM(通用矩阵乘法)的FP8 (8位浮点数)GEMM库,为V3/R1训练和推理提供支持。原创 2025-02-26 18:20:56 · 258 阅读 · 0 评论 -
DeepSeek开源周第二天:DeepEP MoE模型训练与推理的开源通信库
在 H800 GPU 上测试时,DeepEP 的内节点通信性能达到 153-158 GB/s 的 NVLink 带宽,而跨节点通信可达 43-47 GB/s 的 RDMA 带宽。它具有高效全员沟通、节点内和节点间均支持 NVLink 和 RDMA、用于训练和推理预填充的高吞吐量内核、用于推理解码的低延迟内核、原生 FP8 调度支持以及灵活的 GPU 资源控制等特点,能够实现计算 - 通信重叠。它就像是一个协调员,能够让各个专家(模型的不同部分)之间更好地配合,提高整个模型的运行效率。原创 2025-02-26 18:09:01 · 237 阅读 · 0 评论 -
DeepSeek开源周第一天:FlashMLA高性能显卡的 AI 加速利器
2025年2月24日上午9点,DeepSeek开源了用于Hopper GPU的高效MLA解码核心FlashMLA,仅上线45分钟就收获400+ Star,火爆程度可见一斑。实际应用示例:from flash_mla import get_mla_metadata, flash_mla_with_kvcache。项目地址:https://github.com/deepseek-ai/FlashMLA。运行基准测试:python tests/test_flash_mla.py。分页KV缓存(块大小64)原创 2025-02-26 16:23:53 · 248 阅读 · 0 评论 -
DeepSeek开源周
DeepSeek表示,DeepGEMM在Hopper GPU(一种英伟达GPU架构)上最高可达到1350+FP8TFLOPS(每秒万亿次浮点运算),并且像教程一样简洁,可完全即时编译,其核心逻辑只有约300行代码,且在大多数矩阵尺寸上均优于专家调优的内核,并支持密集布局和两种MoE布局。2月26日,DeepSeek进行了其开源周第三日的发布——DeepGEMM,一个支持密集和MoE(专家混合模型)GEMM(通用矩阵乘法)的FP8 (8位浮点数)GEMM库,为V3/R1训练和推理提供支持。原创 2025-02-26 15:00:56 · 235 阅读 · 0 评论 -
DeepSeek-R2要来了?
2月25日,据外媒报道,DeepSeek计划提前发布其新一代AI模型R2。2025年1月20日,幻方量化旗下AI公司深度求索(DeepSeek)正式发布DeepSeek-R1模型,并同步开源模型权重。2月7日消息,出门问问宣布完成与DeepSeek最新推理大模型DeepSeek-R1的深度适配,并将其能力融于公司全线产品中。截至2025年1月27日,在世界大模型排名Arena上,DeepSeek-R1基准测试升至全类别大模型第三,在风格控制类模型分类中与OpenAI o1并列第一。原创 2025-02-26 14:43:21 · 867 阅读 · 0 评论