
YOLO目标检测
文章平均质量分 94
介绍YOLO目标检测的原理及应用
闭月之泪舞
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
YOLO V2目标检测模型
YOLO v2 通过引入锚框、改进网络结构、优化训练策略等方式,在检测精度、速度和泛化能力上都有显著提升,为后续 YOLO 系列(如 YOLO v3、v4、v5)奠定了基础。YOLO v2 相比 YOLO v1 引入了锚框机制(含 K-means 聚类确定锚框尺寸)、批归一化、Darknet-19 全卷积骨干网络、多尺度训练、细粒度特征融合(passthrough 层)、直接位置预测优化训练稳定性,以及支持分类与检测数据集联合训练的框架,显著提升了检测精度、速度和泛化能力。原创 2025-05-15 08:47:46 · 1149 阅读 · 0 评论 -
yolo目标检测中打标工具labelme介绍
在YOLO等目标检测模型中,对图片进行打标的核心目的是为监督学习提供训练数据,通过标注目标物体的边界框和类别标签,使模型能够学习识别和定位目标的规律。打标数据为模型训练提供监督信号,通过对比预测结果与真实标注值,计算定位损失、分类损失和置信度损失,驱动模型参数优化;同时,标注数据也是评估模型性能(如mAP、精度、召回率)的基础,确保模型在多样场景(如多尺度目标、遮挡、复杂背景)中具备泛化能力。此外,标注数据需与数据增强操作同步调整,保证训练过程中图像变换与标注的一致性。原创 2025-05-14 14:28:20 · 4164 阅读 · 0 评论 -
YOLO V1目标检测模型
YOLO(You Only Look Once)算法是一种目标检测算法,是经典的one-stage方法。YOLO v1 开创了单阶段目标检测的先河,其简洁的架构和高效的推理为后续版本(YOLOv2-v8)奠定了基础。尽管存在小目标检测和定位精度的局限性,但其“端到端”的设计思想深刻影响了目标检测领域的发展。YOLO-v1通过回归思想革新了目标检测流程,以速度和全局信息优势成为实时检测的里程碑。原创 2025-05-15 08:47:16 · 659 阅读 · 0 评论 -
YOLO目标检测算法
YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,由Joseph Redmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术,使得算法能够在不同尺度下对目标进行检测。原创 2025-05-09 20:53:07 · 1383 阅读 · 0 评论