简介:Focal Loss损失函数是对交叉熵损失函数的升级。是和yolo配套的
因为yolo会对图像进行网格化处理,会分出正负样本,是多目标检测,而不是简单的分类问题
1. 对比交叉熵损失的区别
多分类:CrossEntropyLoss 公式:
多目标:Focal Loss 公式:
总结多了两个系数,alpha和(1-pt)^gama
2. 分析参数alpha
个人理解:alpha是用来控制正负样本数差别太大的。负样本因为数量往往太多,而使用较小的alpha如0.25来乘以损失值,正样本因为数量往往太少,而使用较大的alpha如0.75来乘以损失值。
官方解释:
- 类别平衡因子 α\alphaα 的主要作用是直接增加正样本(目标区域)的损失权重,减少负样本(背景区域)对总损失的贡献。
- 当负样本远多于正样本时, α\alphaα 通常设置为正样本的权重较高(如 αpos=0.75\alpha_{\text{pos}} = 0.75αpos=0.75, αneg=0.25\alpha_{\text{neg}} = 0.25αneg=0.25)。这种方式在总损失中人为地降低了背景区域的占比