本文详细解析了机器学习十大经典算法原理与实现,并系统介绍了大模型AI学习路径,涵盖提示词工程、RAG系统、智能体开发等技术。从初阶应用到模型训练再到商业闭环,帮助读者从零开始掌握大模型开发技能。文章强调AI技术对职业发展的重要性,并提供实用学习资源,助力读者成为AI时代的高薪人才。
大家好,今天我们来讲讲机器学习中经典的十大算法,包括原理、优缺点、代码等等,那下面我们就一起来看看吧
1 线性回归
**原理:**线性回归是一种预测数值型数据的监督学习算法。它通过拟合最佳直线来建立自变量和因变量的关系。这条最佳直线叫做回归线,并且用 Y = a * X + b 这条线性等式来表示。
优点:
- 模型简单,容易实现
- 许多非线性模型的基础
- 机器学习的基石
缺点:
- 对于非线性数据或者数据特征间具有相关性多项式回归难以建模
- 难以很好地表达高度复杂的数据
**适用场景:**适用于预测数值型数据的监督学习算法,适用于线性可分和特征空间不太大的情况。
代码展示:
from sklearn.linear_model import LinearRegression
2 K近邻算法(KNN)
**原理:**KNN算法是一种基于实例的学习,或者说是懒惰学习。它的核心思想是在预测新数据的类别时,不是通过训练学习输入数据到输出数据的映射关系,而是直接在分类时,将该数据与训练数据进行对比,找出与之最为相似的K个训练实例,然后根据这些实例的标签决定新数据的标签。
优点:
- 理论成熟,思想简单
- 可用于非线性
- 准确度高
- 对异常值不敏感
缺点:
- 计算量大
- 样本不均衡的问题
- 需要大量的内存
**适用场景:**适用于分类和回归问题,特别适合于多分类问题,适合对稀有事件进行分类。
**代码展示:**
from sklearn.neighbors import KNeighborsClassifier
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
3 朴素贝叶斯
**原理:**朴素贝叶斯是一种基于概率理论的简单分类器,它假设预测变量之间相互独立。
优点:
-
朴素贝叶斯起源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率
-
对小规模的数据表现很好,能进行多分类
-
对缺失值不敏感,算法简单
缺点:
-
需要计算先验概率
-
对特征间强相关的模型分类效果不好
**适用场景:**适用于文本分类、情感分析、疾病诊断辅助等。
**代码展示:**
from sklearn.naive_bayes import GaussianNB
4 逻辑回归
**原理:**逻辑回归是一种用于二分类问题的监督学习算法,它将数据映射到logit函数来预测事件发生的概率。因此,它也被称为logit回归
优点:
-
实现简单,广泛应用于工业上
-
分类时计算量非常小,速度很快,存储资源少
-
可观测样本的概率分数
缺点:
-
特征空间很大时,性能不是很好
-
容易前拟合,一般准确度不高
-
只能处理二分类线性可分问题
**适用场景:**最常用于解决二分类问题,但也可以扩展到多分类问题。可以用于预测某一事件发生的概率。
**代码展示:**
from sklearn.linear_model import LogisticRegression
5 支持向量机
**原理:**支持向量机是一种强大的分类器,它的基本思想是在特征空间中寻找一个最优的超平面,以此来区分不同的类别。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。
优点:
-
可以解决高维问题,即大型特征空间;
-
能够处理非线性特征的相互作用;
-
无需依赖整个数据。
缺点:
-
当观测样本很多的时候,效率不是很高;
-
对非线性问题没有通用的解决方案,很难找到一个合适的核函数;
-
对缺失数据敏感。
**适用场景:**适用于分类和回归分析,特别适用于非线性问题和高维数据。
**代码展示:**
from sklearn.svm import SVC
6 决策树(DT)
**原理:**决策树是一种树形结构,用于分类和回归的决策规则。它通过学习简单的决策规则来预测目标变量的值。
优点:
-
计算简单,易于理解,可解释行强
-
比较适合有缺失属性的样本
-
能够处理不相关的特征
-
在短时间内可以对大型数据做出好的结果
缺点:
-
容易发生过拟合
-
易被攻击
-
忽略了数据之间的相关性
-
各个类别样本数量不一致的数据,信息增益偏向具有更多数值的特征
**适用场景:**适用于分类和回归问题,可以处理高维数据,不需要进行特征选择,可以处理缺失值和异常值。
**代码展示:**
from sklearn.tree import DecisionTreeClassifier
7 随机森林
**原理:**随机森林是一种集成学习方法,它通过构建多个决策树并输出平均结果来提高预测准确性。
优点:
- 可以解决分类和回归问题
- 抗过拟合能力强
- 稳定性强
缺点:
- 模型复杂
- 计算成本高
- 计算时间长
**适用场景:**适用于分类和回归问题,可以处理高维数据,不需要进行特征选择,可以处理缺失值和异常值。
**代码展示:**
from sklearn.ensemble import RandomForestClassifier
8 GBDT(梯度提升)
**原理:**计算树的伪残差,通过前一棵树的残差拟合下一棵树,最终进行残差的加和。
优点:
- 预测精度高
- 适合低维数据
- 能处理非线性数据
- 可以灵活处理各种类型的数据,包括连续值和离散值
- 在相对少的调参时间情况下,预测的准备率也可以比较高
缺点:
- 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行
- 如果数据维度较高时会加大算法的计算复杂度
**适用场景:**不知道用什么模型时候可以使用的回归/分类模型
**代码展示:**
from sklearn.ensemble import GradientBoostingClassifier
9 XGBoost
**原理:**通过计算伪残差,计算加和(同GBDT)。
对比GBDT的改进(优点继承):
-
传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑回归(分类问题)或者线性回归(回归问题)
-
传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数(能自定义损失函数)
-
gboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score的L2模的平方和。正则项降低了模型的复杂度,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性
**适用场景:**各种比赛的大杀器,不知道用什么模型时候可以使用的回归/分类模型
**代码:**
import xgboost as xgb
10 K-Means(K-均值)
**原理:**物以类聚,人以群分
优点:
-
原理简单,容易实现
-
内存占用小
缺点:
-
K值需要预先给定,属于预先知识,很多情况下K值的估计是非常困难的,对于像计算全部微信用 户的交往圈这样的场景就完全的没办法用K-Means进行
-
K-Means算法对初始选取的聚类中心点是敏感的,不同的随机种子点得到的聚类结果完全不同(K-Means++)
-
K均值算法并不适合所有的数据类型
-
对离群点的数据进行聚类时,K均值也有问题,这种情况下,离群点检测和删除有很大的帮助
**适用场景:**没有明确标签的情况下,我们经常用聚类模型来进行操作。
**代码展示:**
from sklearn.cluster import KMeans
零基础如何高效学习大模型?
你是否懂 AI,是否具备利用大模型去开发应用能力,是否能够对大模型进行调优,将会是决定自己职业前景的重要参数。
为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和鲁为民博士系统梳理大模型学习脉络,这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️
【大模型全套视频教程】
教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。
从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。
同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!
深耕 AI 领域技术专家带你快速入门大模型
跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!
【精选AI大模型权威PDF书籍/教程】
精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。
【AI 大模型面试题 】
除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。
【大厂 AI 岗位面经分享(92份)】
【AI 大模型面试真题(102 道)】
【LLMs 面试真题(97 道)】
【640套 AI 大模型行业研究报告】
【AI大模型完整版学习路线图(2025版)】
明确学习方向,2025年 AI 要学什么,这一张图就够了!
👇👇点击下方卡片链接免费领取全部内容👇👇
抓住AI浪潮,重塑职业未来!
科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。
行业趋势洞察:
- 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
- 人才争夺战: 拥有3-5年经验、扎实AI技术功底和真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
- 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。
与其观望,不如行动!
面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。
01 为什么分享这份学习资料?
当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。
因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!
我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。
*02 这份资料的价值在哪里?*
专业背书,系统构建:
-
本资料由我与鲁为民博士共同整理。鲁博士拥有清华大学学士和美国加州理工学院博士学位,在人工智能领域造诣深厚:
-
- 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇。
- 拥有多项中美发明专利。
- 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
-
目前,我有幸与鲁博士共同进行人工智能相关研究。
内容实用,循序渐进:
-
资料体系化覆盖了从基础概念入门到核心技术进阶的知识点。
-
包含丰富的视频教程与实战项目案例,强调动手实践能力。
-
无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考,助力你提升技术能力,向大模型相关岗位转型发展。
抓住机遇,开启你的AI学习之旅!