万字长文!机器学习十大算法全解析,一文掌握AI核心奥秘!

机器学习十大算法与大模型学习指南

本文详细解析了机器学习十大经典算法原理与实现,并系统介绍了大模型AI学习路径,涵盖提示词工程、RAG系统、智能体开发等技术。从初阶应用到模型训练再到商业闭环,帮助读者从零开始掌握大模型开发技能。文章强调AI技术对职业发展的重要性,并提供实用学习资源,助力读者成为AI时代的高薪人才。


大家好,今天我们来讲讲机器学习中经典的十大算法,包括原理、优缺点、代码等等,那下面我们就一起来看看吧

1 线性回归

**原理:**线性回归是一种预测数值型数据的监督学习算法。它通过拟合最佳直线来建立自变量和因变量的关系。这条最佳直线叫做回归线,并且用 Y = a * X + b 这条线性等式来表示。

优点:

  • 模型简单,容易实现
  • 许多非线性模型的基础
  • 机器学习的基石

缺点:

  • 对于非线性数据或者数据特征间具有相关性多项式回归难以建模
  • 难以很好地表达高度复杂的数据

**适用场景:**适用于预测数值型数据的监督学习算法,适用于线性可分和特征空间不太大的情况。

代码展示:

from sklearn.linear_model import LinearRegression

2 K近邻算法(KNN)

**原理:**KNN算法是一种基于实例的学习,或者说是懒惰学习。它的核心思想是在预测新数据的类别时,不是通过训练学习输入数据到输出数据的映射关系,而是直接在分类时,将该数据与训练数据进行对比,找出与之最为相似的K个训练实例,然后根据这些实例的标签决定新数据的标签。

优点:

  • 理论成熟,思想简单
  • 可用于非线性
  • 准确度高
  • 对异常值不敏感

缺点:

  • 计算量大
  • 样本不均衡的问题
  • 需要大量的内存

**适用场景:**适用于分类和回归问题,特别适合于多分类问题,适合对稀有事件进行分类。

**代码展示:**​​​​​​​

from sklearn.neighbors import KNeighborsClassifier

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

3 朴素贝叶斯

**原理:**朴素贝叶斯是一种基于概率理论的简单分类器,它假设预测变量之间相互独立。

优点:

  • 朴素贝叶斯起源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率

  • 对小规模的数据表现很好,能进行多分类

  • 对缺失值不敏感,算法简单

缺点:

  • 需要计算先验概率

  • 对特征间强相关的模型分类效果不好

**适用场景:**适用于文本分类、情感分析、疾病诊断辅助等。

**代码展示:**​​​​​​​

from sklearn.naive_bayes import GaussianNB

4 逻辑回归

**原理:**逻辑回归是一种用于二分类问题的监督学习算法,它将数据映射到logit函数来预测事件发生的概率。因此,它也被称为logit回归

优点:

  • 实现简单,广泛应用于工业上

  • 分类时计算量非常小,速度很快,存储资源少

  • 可观测样本的概率分数

缺点:

  • 特征空间很大时,性能不是很好

  • 容易前拟合,一般准确度不高

  • 只能处理二分类线性可分问题

**适用场景:**最常用于解决二分类问题,但也可以扩展到多分类问题。可以用于预测某一事件发生的概率。

**代码展示:**​​​​​​​

from sklearn.linear_model import LogisticRegression

5 支持向量机

**原理:**支持向量机是一种强大的分类器,它的基本思想是在特征空间中寻找一个最优的超平面,以此来区分不同的类别。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。

优点:

  • 可以解决高维问题,即大型特征空间;

  • 能够处理非线性特征的相互作用;

  • 无需依赖整个数据。

缺点:

  • 当观测样本很多的时候,效率不是很高;

  • 对非线性问题没有通用的解决方案,很难找到一个合适的核函数;

  • 对缺失数据敏感。

**适用场景:**适用于分类和回归分析,特别适用于非线性问题和高维数据。

**代码展示:**​​​​​​​

from sklearn.svm import SVC

6 决策树(DT)

**原理:**决策树是一种树形结构,用于分类和回归的决策规则。它通过学习简单的决策规则来预测目标变量的值。

优点:

  • 计算简单,易于理解,可解释行强

  • 比较适合有缺失属性的样本

  • 能够处理不相关的特征

  • 在短时间内可以对大型数据做出好的结果

缺点:

  • 容易发生过拟合

  • 易被攻击

  • 忽略了数据之间的相关性

  • 各个类别样本数量不一致的数据,信息增益偏向具有更多数值的特征

**适用场景:**适用于分类和回归问题,可以处理高维数据,不需要进行特征选择,可以处理缺失值和异常值。

**代码展示:**​​​​​​​

from sklearn.tree import DecisionTreeClassifier

7 随机森林

**原理:**随机森林是一种集成学习方法,它通过构建多个决策树并输出平均结果来提高预测准确性。

优点:

  • 可以解决分类和回归问题
  • 抗过拟合能力强
  • 稳定性强

缺点:

  • 模型复杂
  • 计算成本高
  • 计算时间长

**适用场景:**适用于分类和回归问题,可以处理高维数据,不需要进行特征选择,可以处理缺失值和异常值。

**代码展示:**​​​​​​​

from sklearn.ensemble import RandomForestClassifier

8 GBDT(梯度提升)

**原理:**计算树的伪残差,通过前一棵树的残差拟合下一棵树,最终进行残差的加和。

优点:

  • 预测精度高
  • 适合低维数据
  • 能处理非线性数据
  • 可以灵活处理各种类型的数据,包括连续值和离散值
  • 在相对少的调参时间情况下,预测的准备率也可以比较高

缺点:

  • 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行
  • 如果数据维度较高时会加大算法的计算复杂度

**适用场景:**不知道用什么模型时候可以使用的回归/分类模型

**代码展示:**​​​​​​​

from sklearn.ensemble import GradientBoostingClassifier

9 XGBoost

**原理:**通过计算伪残差,计算加和(同GBDT)。

对比GBDT的改进(优点继承):

  • 传统GBDT以CART作为基分类器,xgboost还支持线性分类器,这个时候xgboost相当于带L1和L2正则化项的逻辑回归(分类问题)或者线性回归(回归问题)

  • 传统GBDT在优化时只用到一阶导数信息,xgboost则对代价函数进行了二阶泰勒展开,同时用到了一阶和二阶导数(能自定义损失函数)

  • gboost在代价函数里加入了正则项,用于控制模型的复杂度。正则项里包含了树的叶子节点个数、每个叶子节点上输出的score的L2模的平方和。正则项降低了模型的复杂度,使学习出来的模型更加简单,防止过拟合,这也是xgboost优于传统GBDT的一个特性

**适用场景:**各种比赛的大杀器,不知道用什么模型时候可以使用的回归/分类模型

**代码:**​​​​​​​

import xgboost as xgb

10 K-Means(K-均值)

**原理:**物以类聚,人以群分

优点:

  • 原理简单,容易实现

  • 内存占用小

缺点:

  • K值需要预先给定,属于预先知识,很多情况下K值的估计是非常困难的,对于像计算全部微信用 户的交往圈这样的场景就完全的没办法用K-Means进行

  • K-Means算法对初始选取的聚类中心点是敏感的,不同的随机种子点得到的聚类结果完全不同(K-Means++)

  • K均值算法并不适合所有的数据类型

  • 对离群点的数据进行聚类时,K均值也有问题,这种情况下,离群点检测和删除有很大的帮助

**适用场景:**没有明确标签的情况下,我们经常用聚类模型来进行操作。

**代码展示:**​​​​​​​

from sklearn.cluster import KMeans

零基础如何高效学习大模型?

你是否懂 AI,是否具备利用大模型去开发应用能力,是否能够对大模型进行调优,将会是决定自己职业前景的重要参数。

为了帮助大家打破壁垒,快速了解大模型核心技术原理,学习相关大模型技术。从原理出发真正入局大模型。在这里我和鲁为民博士系统梳理大模型学习脉络,这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码免费领取🆓**⬇️⬇️⬇️

在这里插入图片描述

【大模型全套视频教程】

教程从当下的市场现状和趋势出发,分析各个岗位人才需求,带你充分了解自身情况,get 到适合自己的 AI 大模型入门学习路线。

从基础的 prompt 工程入手,逐步深入到 Agents,其中更是详细介绍了 LLM 最重要的编程框架 LangChain。最后把微调与预训练进行了对比介绍与分析。

同时课程详细介绍了AI大模型技能图谱知识树,规划属于你自己的大模型学习路线,并且专门提前收集了大家对大模型常见的疑问,集中解答所有疑惑!

在这里插入图片描述

深耕 AI 领域技术专家带你快速入门大模型

跟着行业技术专家免费学习的机会非常难得,相信跟着学习下来能够对大模型有更加深刻的认知和理解,也能真正利用起大模型,从而“弯道超车”,实现职业跃迁!

图片

【精选AI大模型权威PDF书籍/教程】

精心筛选的经典与前沿并重的电子书和教程合集,包含《深度学习》等一百多本书籍和讲义精要等材料。绝对是深入理解理论、夯实基础的不二之选。

在这里插入图片描述

【AI 大模型面试题 】

除了 AI 入门课程,我还给大家准备了非常全面的**「AI 大模型面试题」,**包括字节、腾讯等一线大厂的 AI 岗面经分享、LLMs、Transformer、RAG 面试真题等,帮你在面试大模型工作中更快一步。

【大厂 AI 岗位面经分享(92份)】

图片

【AI 大模型面试真题(102 道)】

图片

【LLMs 面试真题(97 道)】

图片

【640套 AI 大模型行业研究报告】

在这里插入图片描述

【AI大模型完整版学习路线图(2025版)】

明确学习方向,2025年 AI 要学什么,这一张图就够了!

img

👇👇点击下方卡片链接免费领取全部内容👇👇

在这里插入图片描述

抓住AI浪潮,重塑职业未来!

科技行业正处于深刻变革之中。英特尔等巨头近期进行结构性调整,缩减部分传统岗位,同时AI相关技术岗位(尤其是大模型方向)需求激增,已成为不争的事实。具备相关技能的人才在就业市场上正变得炙手可热。

行业趋势洞察:

  • 转型加速: 传统IT岗位面临转型压力,拥抱AI技术成为关键。
  • 人才争夺战: 拥有3-5年经验、扎实AI技术功底真实项目经验的工程师,在头部大厂及明星AI企业中的薪资竞争力显著提升(部分核心岗位可达较高水平)。
  • 门槛提高: “具备AI项目实操经验”正迅速成为简历筛选的重要标准,预计未来1-2年将成为普遍门槛。

与其观望,不如行动!

面对变革,主动学习、提升技能才是应对之道。掌握AI大模型核心原理、主流应用技术与项目实战经验,是抓住时代机遇、实现职业跃迁的关键一步。

在这里插入图片描述

01 为什么分享这份学习资料?

当前,我国在AI大模型领域的高质量人才供给仍显不足,行业亟需更多有志于此的专业力量加入。

因此,我们决定将这份精心整理的AI大模型学习资料,无偿分享给每一位真心渴望进入这个领域、愿意投入学习的伙伴!

我们希望能为你的学习之路提供一份助力。如果在学习过程中遇到技术问题,也欢迎交流探讨,我们乐于分享所知。

*02 这份资料的价值在哪里?*

专业背书,系统构建:

  • 本资料由我与鲁为民博士共同整理。鲁博士拥有清华大学学士美国加州理工学院博士学位,在人工智能领域造诣深厚:

    • 在IEEE Transactions等顶级学术期刊及国际会议发表论文超过50篇
    • 拥有多项中美发明专利。
    • 荣获吴文俊人工智能科学技术奖(中国人工智能领域重要奖项)。
  • 目前,我有幸与鲁博士共同进行人工智能相关研究。

在这里插入图片描述

内容实用,循序渐进:

  • 资料体系化覆盖了从基础概念入门核心技术进阶的知识点。

  • 包含丰富的视频教程实战项目案例,强调动手实践能力。

  • 无论你是初探AI领域的新手,还是已有一定技术基础希望深入大模型的学习者,这份资料都能为你提供系统性的学习路径和宝贵的实践参考助力你提升技术能力,向大模型相关岗位转型发展

    在这里插入图片描述在这里插入图片描述在这里插入图片描述

抓住机遇,开启你的AI学习之旅!

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员一粟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值