
图像分割
最新论文阅读
Jeremy_lf
知所先后
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
CVPR2020论文阅读——超强通道注意力模块ECANet!
Abstract最近,通道注意机制已被证明在改善深度卷积神经网络(CNN)的性能方面具有巨大潜力。然而,大多数现有方法致力于开发更复杂的注意模块以实现更好的性能,这不可避免地会增加模型的复杂性。 为了克服性能和复杂性折衷之间的矛盾,本文提出了一种有效的信道注意(ECA)模块,该模块仅包含少量参数,同时带来明显的性能提升。 通过剖析SENet中的通道注意模块,我们从经验上表明避免降维对于学习通道注意很重要,并且适当的跨通道交互可以在保持性能的同时显着降低模型的复杂性。因此,我们提出了一种无需降维的局部跨通.原创 2020-07-02 17:11:11 · 17567 阅读 · 11 评论 -
VoVNet:一种实时高效的目标检测Backbone网络【pytorch代码详解】
Pytorch实现代码2.Factors of Efficient Network Design在设计轻量级网络时,FLOPs和模型参数是主要考虑因素,但是减少模型大小和FLOPs不等同于减少推理时间和降低能耗。比如ShuffleNetv2与MobileNetv2在相同的FLOPs下,前者在GPU上速度更快。所以除了FLOPs和模型大小外,还需要考虑其他因素对能耗和模型推理速度的影响。这里考虑两个重要的因素:内存访问成本(Memory Access Cost,MAC)和GPU计算效率。2.1. Mem原创 2020-06-23 12:47:27 · 2345 阅读 · 0 评论 -
【实例分割】论文阅读-CenterMask: Real-Time Anchor-Free Instance Segmentation
2.2. Architecture图2显示了CenterMask的总体架构。 CenterMask由三部分组成:(1)用于特征提取的主干,(2)FCOS [33]detection head和(3)Mask head。 Mask的生成过程包括:从FCOS [33]中检测物体,然后以像素为单位预测裁剪区域内部的分割Mask。2.3. Adaptive RoI Assignment Function在FCOS [33]box head 中预测候选框后,CenterMask使用与Mask RCNN相同的预原创 2020-06-16 11:27:23 · 1587 阅读 · 0 评论 -
目标检测与图像分割常用损失函数详解
SSD Loss """SSD Weighted Loss Function Compute Targets: 1) Produce Confidence Target Indices by matching ground truth boxes with (default) 'priorboxes' that have jaccard index > threshold parameter (default thresho原创 2020-06-15 18:04:44 · 1633 阅读 · 0 评论 -
【实例分割】论文阅读:YOLACT Real-time Instance Segmentation
论文:YOLACT Real-time Instance Segmentation (ICCV2019)作者:Daniel Bolya Chong ZhouAbstract我们为实时实例分割提供了一个简单的全卷积模型,该模型在单个Titan Xp上以33.5 fps的速度在MS COCO上达到了==29.8 mAP,==这比以前的任何竞争方法都快得多。此外,我们仅在一个GPU上训练后即可获得此结果。我们通过将实例分割分为两个并行的子任务来完成此任务:(1)生成一组原型Mask,以及(2)预测每个实.原创 2020-06-08 14:58:37 · 864 阅读 · 0 评论 -
论文阅读—图像分割方法综述(三)(arXiv:[cs:cv]20200410)
前面介绍了分割领域常用网络架构及其相应的分割模型,本节主要介绍一些最受欢迎的图像分割数据集及其特征。此外还有评估基于深度学习的分割模型的常用指标。并报告了这些模型的定量结果和实验性能。系列回顾论文阅读—图像分割方法综述(一)(arXiv:[cs:cv]20200410)论文阅读—图像分割方法综述(二)(arXiv:[cs:cv]20200410)5、IMAGE SEGMENTATION DATASETS在本节中,我们提供一些最广泛使用的图像分割数据集的摘要。 我们将这些数据集分为3类-2D图像.原创 2020-06-04 09:21:42 · 1376 阅读 · 0 评论 -
论文阅读—图像分割方法综述(二)(arXiv:[cs:cv]20200410)
上一篇章,主要介绍了目前图像分割领域常用的基础网络结构,以及总结了十大图像分割算法,本节继续介绍论文剩余部分。4.3 Encoder-Decoder Based Models另一个流行的用于图像分割的深度模型系列基于卷积编码器-解码器体系结构。 大多数基于DL的分割工作都使用某种编码器/解码器模型,我们将这些工作分为两类:用于一般分割的编码器-解码器模型和用于医学图像分割的编码器/解码器模型(以更好地区分应用)。3.4.1 Encoder-Decoder Models for General Se.原创 2020-06-03 15:48:21 · 2045 阅读 · 0 评论 -
论文阅读—图像分割方法综述(一)(arXiv:[cs:cv]20200410)
论文:Image Segmentation Using Deep Learning:A Survey作者:Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza1、Abstract图像分割是图像处理和计算机视觉中的关键主题,其应用包括场景理解,医学图像分析,机器人感知,视频监控,增强现实和图像压缩等。在文献中已经开发了用于图像分割的各种算法。最近,由于深度学习模型在各种视觉应用中的成功,已经有大量旨在利用深度学习模型开发图像分割方法的工作.原创 2020-06-02 17:11:28 · 2558 阅读 · 0 评论