NOI2.6.3532 最大上升子序列和 题解(C++)

本文介绍了一种求解最大上升子序列和的算法,通过动态规划方法找到给定序列中具有最大和的上升子序列。例如,对于序列(1,7,3,5,9,4,8),最大上升子序列和为18,即子序列(1,3,5,9)的和。文章提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

3532:最大上升子序列和
总Time Limit: 1000ms Memory Limit: 65536kB

Description
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …,aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中序列和最大为18,为子序列(1, 3, 5, 9)的和.
你的任务,就是对于给定的序列,求出最大上升子序列和。注意,最长的上升子序列的和不一定是最大的,比如序列(100, 1, 2, 3)的最大上升子序列和为100,而最长上升子序列为(1, 2, 3)

Input
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000(可能重复)。

Output
最大上升子序列和

Sample Input
7
1 7 3 5 9 4 8
Sample Output
18

代码

代码很简单

#include<bits/stdc++.h>
using namespace std;
int n,result;
int a[1001],f[1001];
int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i];
		f[i] = a[i];
		for(int j = 1;j<=i-1;j++){
			if(a[j]<a[i]){
				f[i] = max(f[i],f[j]+a[i]);
			}
		}
		result = max(f[i],result);
	}
	cout<<result<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值