题目
3532:最大上升子序列和
总Time Limit: 1000ms Memory Limit: 65536kB
Description
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …,aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中序列和最大为18,为子序列(1, 3, 5, 9)的和.
你的任务,就是对于给定的序列,求出最大上升子序列和。注意,最长的上升子序列的和不一定是最大的,比如序列(100, 1, 2, 3)的最大上升子序列和为100,而最长上升子序列为(1, 2, 3)
Input
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000(可能重复)。
Output
最大上升子序列和
Sample Input
7
1 7 3 5 9 4 8
Sample Output
18
代码
代码很简单
#include<bits/stdc++.h>
using namespace std;
int n,result;
int a[1001],f[1001];
int main(){
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
f[i] = a[i];
for(int j = 1;j<=i-1;j++){
if(a[j]<a[i]){
f[i] = max(f[i],f[j]+a[i]);
}
}
result = max(f[i],result);
}
cout<<result<<endl;
return 0;
}