python pandas 读取列名以及index

本文介绍如何使用pandas库中的DataFrame对象读取列名和索引的方法,包括使用df.columns.values, df.columns.tolist(), list(df)以及df.index.tolist()等不同方式。

读取df的列名

在这里插入图片描述

[col for col in df]

在这里插入图片描述

df.columns.values返回一个array,用tolist()返回一个list

在这里插入图片描述

df.columns返回一个index,用tolist()返回一个list

在这里插入图片描述

list(df)

在这里插入图片描述

读取index

df.index.tolist()
在这里插入图片描述

### 解决Pandas读取Excel时列名出现Unnamed的问题 在使用 Pandas 读取 Excel 文件时,如果数据文件中存在多余的空列或格式问题,可能会导致生成的 DataFrame 中出现带有 `Unnamed:` 前缀的列名。以下是一些解决方法[^1]。 #### 方法一:通过 `usecols` 参数指定需要读取的列 可以通过 `usecols` 参数明确指定需要读取的列索引或列名,从而避免读取不必要的空列。 ```python import pandas as pd df = pd.read_excel("data.xlsx", usecols=lambda col: 'Unnamed' not in col) ``` 这种方法会跳过所有包含 `Unnamed:` 的列[^2]。 #### 方法二:删除包含 `Unnamed:` 的列 在读取完 Excel 文件后,可以手动删除所有包含 `Unnamed:` 的列。 ```python import pandas as pd df = pd.read_excel("data.xlsx") df = df.loc[:, ~df.columns.str.contains('^Unnamed')] ``` 此代码片段利用布尔索引来筛选出不包含 `Unnamed:` 的列[^3]。 #### 方法三:设置 `index_col` 参数 如果 Excel 文件的第一列是索引列,可以通过设置 `index_col=0` 来将其作为索引,从而减少不必要的列名问题。 ```python import pandas as pd df = pd.read_excel("data.xlsx", index_col=0) ``` #### 方法四:清理原始 Excel 文件 如果可能,建议在读取之前检查并清理原始 Excel 文件,移除多余的空列或调整格式,以确保生成的 DataFrame 结构更加清晰。 ### 示例代码 以下是一个完整的示例,展示如何结合上述方法解决 `Unnamed:` 列的问题: ```python import pandas as pd # 方法一:使用 usecols 参数 df_usecols = pd.read_excel("data.xlsx", usecols=lambda col: 'Unnamed' not in col) # 方法二:删除包含 Unnamed 的列 df = pd.read_excel("data.xlsx") df_cleaned = df.loc[:, ~df.columns.str.contains('^Unnamed')] # 方法三:设置 index_col 参数 df_index_col = pd.read_excel("data.xlsx", index_col=0) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值