WoBERT Pytorch使用

该博客介绍了如何使用PyTorch实现基于WoBERT的新闻多分类任务。首先,你需要通过pip安装依赖,并从指定链接下载WoBERT模型。模型转换可以通过提供的转换脚本完成。之后,配置参数并运行训练或测试脚本。源代码中包含了自定义的分词器和BERT分类模型。案例数据为train.csv,关键改动在于tokenizer和模型的微调。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

pytorch实现的WoBERT + 新闻多分类样例

 

代码:

https://github.com/425776024/WoBERT

 

1.安装依赖

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt

2.WoBERT模型下载

方式1.

https://github.com/ZhuiyiTechnology/WoBERT 下载keras模型,然后执行转换变成pytorch的模型

python config/conver.py

方式2.

直接下载使用 , 链接: https://pan.baidu.com/s/1KbLvVkXriF_x9XZnaYvDhg 密码: 94au

3.配置参数

vim config/configs.yaml

4.train\test

python train.py

 

案例数据

data/train.csv

细节

除了transformers转换模型,主要是tokenizer的变化

  • 1.稍微自定义了个专门的分词,见src/models/bert_model.py:WoBertTokenizer
  • 2.稍微自定义了个专门的BERT分类模型,见src/models/bert_model.py:WoBertClassificationModel
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值