- 博客(18)
- 收藏
- 关注

原创 SPL 量化编程课
当前市面上的量化课程的困境:现有技术体系对初学者过于复杂,却又无力改变这一现状。专业量化使用的Python等编程语言和回测框架,大都是为专业人员设计的。而课程设计者大多不具备开发简化工具的能力,只能在这些复杂系统的基础上进行"削足适履"式的教学。这种妥协导致了一个尴尬的结果:学员花费大量时间学习后,要么被困在编程语法细节中,要么只能理解抽象原理而无法实操。更糟糕的是,许多课程为了弥补实操教学的不足,不得不填充大量金融知识,使课程变得"头重脚轻"——谈资很多,技能很少。本课程与市面上其他课程不同~~
2025-07-09 16:39:08
1765
原创 用 SPL 量化工作台实现海龟策略
海龟策略是一种趋势跟踪交易策略,基于唐奇安通道确定买卖信号。策略核心是在股价突破20日最高价时买入,跌破20日最低价时卖出。通过SPL量化工作台可快速实现该策略,并进行回测优化,结果显示该策略在天齐锂业2021年表现优于沪深300指数。策略优势在于自动调整通道宽度,适合趋势行情,但在震荡市中可能出现假信号。使用者可通过调整参数周期、加入过滤条件或分步加仓等方式优化策略。该工具无需编码,即时反馈,是量化交易入门的便捷选择。
2025-07-29 10:32:01
1362
原创 用 SPL 量化工作台实现 MACD 背离策略
本文重点阐述了顶底背离策略:当股价创新高但DIFF未创新高(顶背离)时卖出,股价创新低但DIFF未创新低(底背离)时买入。通过SPL量化工作台可便捷实现该策略,内置指标免除了复杂编程,支持多股票回测和图形化分析验证。2021年宁德时代案例显示该策略收益率达105%,但需注意信号滞后性和单边行情失效风险,建议结合其他指标并先用小资金测试。
2025-07-28 15:17:27
1067
原创 用 SPL 量化工作台实现双均线策略
摘要:SPL量化工作台是一款基于开源技术SPL的量化策略工具,帮助普通投资者轻松实现策略设计和回测。该工具具有零门槛、即时反馈和数据齐全的特点,使初学者也能快速上手量化交易。虽然手机端体验有待改进,但其直观的可视化功能和简便的操作方式,为投资者提供了一个实用的量化入门解决方案。文章以海尔智家(600690)为例,演示了双均线策略的完整操作流程:从数据获取、均线指标设置(MA5/MA10),到买卖信号生成(金叉买入/死叉卖出),最后进行回测验证。
2025-07-28 11:05:59
852
原创 第 14 章 线性回归预测策略----SPL量化编程课
线性回归模型在股票量化策略中的应用:本文介绍了基于线性代数的回归分析在股市预测中的使用方法。通过建立以财务指标或价格数据为自变量、股票价格为因变量的线性模型,可实现对股价走势的预测。文章详细阐述了建模步骤,包括训练/预测数据划分、PCA降维处理共线性问题等关键环节,并提供了Spl代码实现。实际测试表明,单纯依赖线性回归模型预测效果有限,建议结合其他指标综合判断。文中强调数学建模时需注意共线性问题,并提供通用指标函数框架,便于策略开发。
2025-07-18 10:28:40
1361
原创 第 13 章 KNN 简单策略----SPL量化编程课
摘要:本文介绍了KNN算法在量化交易中的应用,通过计算历史交易日特征与当日的相似度来预测股票涨跌。具体步骤包括:选择最高价差和收盘开盘价差作为特征,计算欧式距离,选取最近邻的m个交易日进行众数预测。文章提供了SPL实现代码,包括特征计算、距离运算和交易信号生成,并指出回测结果显示该策略效果有限。通过这个简单案例展示了机器学习在量化投资中的基本应用方法。
2025-07-18 10:26:56
894
原创 第 12 章 趋势交易策略----SPL量化编程课
本文介绍了一种趋势交易策略,通过识别股价波峰波谷特征进行买卖决策。策略定义了波谷(低于前后M天的股价)和波峰(高于前后M天的股价)两个关键指标。买入条件为:最近波谷低于N天股价的5分位值,且当日股价超过波峰前股价。卖出条件为:股价跌破最近波谷或收益率超过50%。文中给出了指标函数的实现逻辑(返回1/-1/0分别表示买入/卖出/观望信号),并提供了策略回测框架,包括数据加载、信号生成、买卖执行及止盈控制等完整流程。该策略适用于中长期趋势跟踪,通过参数n=252天实现较大周期判断。
2025-07-17 11:36:21
684
原创 第 11 章 海龟策略----SPL量化编程课
本文介绍了海龟交易策略中的唐奇安通道指标应用。该策略通过计算过去N天(通常20天)的最高价和最低价,形成上下轨道线。当价格突破上轨时产生买入信号(1),跌破下轨时产生卖出信号(-1)。文章详细说明了指标计算方法和交易规则:空仓时出现买入信号则以收盘价买入1手,持仓时出现卖出信号则以收盘价清仓。最后给出了基于此策略的回测代码实现流程,包括数据加载、指标计算和交易信号执行等关键步骤。该策略利用价格通道突破原理,为投资者提供明确的买卖时点判断依据。
2025-07-16 14:34:11
820
原创 第 10 章 仓位管理----SPL量化编程课
本文介绍了量化交易中的两种仓位管理方法:固定金额法和固定比例法。固定金额法采用每次投入固定金额进行交易,操作简单但灵活性不足;固定比例法则按账户资金的固定比例投入,能随账户价值自动调整仓位。文章以MACD背离策略为例,详细展示了两种方法的代码实现过程,包括数据读取、买卖信号处理和收益统计等关键步骤。此外,还介绍了如何将策略信号导出为CSV文件,便于实际交易中参考使用。这些方法帮助交易者在不同市场环境下平衡风险与收益,实现稳定增长。
2025-07-16 11:40:25
907
原创 第 9 章 使用基本面信息----SPL量化编程课
本文介绍了基本面选股方法,重点分析了company.btx数据文件中的财务指标含义和使用方法。主要内容包括:1) 详细解读了公司基本面数据的字段结构,如净资产收益率、销售毛利率、资产负债率等核心财务指标;2) 提供了读取基本面数据的SPL脚本实现方法;3) 演示了基于财务指标(如毛利率≥30%、净利率≥15%、ROE≥20%、资产负债率<50%)的选股策略构建过程;4) 说明了如何将基本面数据与K线数据进行拼接。文章为投资者提供了利用财务数据进行股票筛选的实用技术方案。
2025-07-15 13:40:58
608
原创 第 8 章 学会用指数----SPL量化编程课
本文介绍了如何获取指数数据(如日线行情)、编写脚本进行策略与指数的收益对比(如动态图表分析),并详细讲解了“相对市场波动率”等需结合指数数据计算的指标实现方法。通过函数EXT将指数数据拼接至股票K线,为量化分析提供基础。最后以沪深300为例,演示了250日波动率指标的计算流程。
2025-07-15 13:37:54
915
原创 第 7 章 MACD 背离策略----SPL量化编程课
本文详细阐述了MACD的计算方法(含EMA平滑系数公式)及指标函数封装,并展示了基于SPL语言的策略实现流程,包括数据加载、指标计算、买卖条件判断及多股票回测框架。此外,还介绍了平仓函数(SellAll/SellEach)用于止盈止损,支持按涨幅阈值或持有天数自动卖出。通过整合DVGMACD函数,策略开发效率显著提升,适用于中长期趋势投资。
2025-07-14 16:27:51
470
原创 第 6 章 均价策略和指标----SPL量化编程课
本文介绍了股票量化交易中的均价策略及其实现方法。均价策略通过比较短期和长期移动平均线(MA)来判断买卖时机,当5日MA上穿10日MA时买入,下穿时卖出。文章详细讲解了MA的计算方法,即连续若干天收盘价的算术平均,并演示了如何将策略转化为代码实现,包括数据读取、指标计算、买卖信号判断等步骤。
2025-07-14 11:52:32
1135
原创 第 5 章 回测例程----SPL量化编程课
本文介绍了如何将回测功能模块化封装成通用脚本backtest.splx,包含买入手续费计算(bfee)、卖出手续费计算(sfee)、最大回撤率计算(withdraw)、交易初始化(Begin)、买卖操作(Buy/Sell)等核心函数。重点说明了回测指标的计算逻辑,如现金收益、持仓价值、收益率、买盘数等,并以固定价格买卖策略为例演示了调用流程:先初始化K线数据,循环处理每日买卖,最后用Summary和Display函数输出各项指标。该方法简化了策略回测过程,实现了代码复用,便于快速验证交易策略的有效性。
2025-07-13 10:00:00
987
原创 第 4 章 编写第一个策略----SPL量化编程课
本文介绍了一个简单的股票固定价格买卖策略及回测方法。策略设定当股价低于25元买入,高于30元卖出,每次交易1手(100股)。通过编程实现数据读取、交易信号生成和交易记录保存,并计算买入次数、卖出次数、资金占用等回测指标。以2024年某支股票为例进行回测,结果显示该策略收益率达30.62%,成功捕捉上涨趋势并规避下跌风险。文章还详细说明了手续费计算方法和各项回测指标的计算公式,为量化交易初学者提供了实用参考。
2025-07-12 10:00:00
865
原创 第 3 章 复权数据----SPL量化编程课
股票复权是调整历史价格数据的技术手段,主要用于消除分红、送配股等行为导致的股价断层,使历史走势更连贯。复权分为前复权(保持最新价格不变调整历史数据)和后复权(保持早期价格不变调整后续数据)两种方式。 计算过程采用当日复权因子而非累计因子,避免远距离数据失真。通过SPL编程可实现自动计算,实际应用中可将复权功能整合到数据读取脚本,通过参数灵活选择复权方式,并优化计算效率。复权数据对量化分析至关重要,能提供更准确的价格可比性。
2025-07-11 10:28:51
780
原创 第2章 理解K线数据----SPL量化编程课
本章介绍SPL在量化交易中的K线数据处理方法。首先提供免费A股日线数据(BTX格式),讲解其高性能二进制特性及与CSV的互转操作。重点演示两种数据读取方式:直接加载(`T()`函数)和游标分块处理(`T@c()`函数),避免大数据内存溢出。通过`loadkday.splx`脚本实现多股票、时间段的灵活查询,支持注册为函数复用。此外,利用`stock.btx`筛选特定股票(如银行股、非ST股),并整合ECharts动态绘制K线图(如收盘价走势)。全流程覆盖数据获取、清洗、分析与可视化,为量化策略奠定基础。
2025-07-10 14:03:13
1284
原创 第1章 工具准备----SPL量化编程课
摘要:SPL是一款免费的数据处理工具,安装简便,界面类似Excel。用户可在格子区编写代码(每个格子一句代码),右侧实时显示计算结果。支持变量自动命名和顺序执行功能。SPL能读取CSV、TXT等文件,将数据转换为内存中的序表(类似DataFrame),提供T()函数根据扩展名自动识别文件类型。文中演示了如何用SPL读取股票交易数据CSV文件,并介绍了序表的基本概念(字段、记录)。该工具操作直观,适合数据处理任务。
2025-07-10 11:20:33
380
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人