一,基于局部直方图信息增强算法
对比度受限的自适应直方图均衡化(Contrast Limited Adaptive Histogram Equalization,简称CLAHE)是一种用于图像增强的技术,其原理主要基于自适应直方图均衡化(Adaptive Histogram Equalization,简称AHE)但增加了对比度限制来避免过度放大噪声。
CLAHE的原理可以概括为以下几个步骤:
1,图像分块:首先,将输入图像分割成多个不重叠的小块(通常称为tiles或子区域)。每个小块的大小是固定的,例如8x8或16x16像素。
2,计算直方图:对于每个小块,计算其灰度直方图。直方图描述了小块内不同灰度级别的像素数量。
3,直方图均衡化:对每个小块的直方图进行均衡化,使得小块内的像素灰度分布更加均匀。这通常是通过累积分布函数(CDF)映射来实现的,将输入灰度值映射到新的灰度值,以扩展像素灰度值的范围。
4,对比度限制:在直方图均衡化的过程中,引入一个对比度限制参数(clipLimit)。这个参数限制了直方图的高度,从而限制了对比度增强的幅度。如果一个小块的直方图高度超过了设定的限制,那么超过限制的部分将被裁剪掉&#