力扣—53最大子序和(动态规划)

本文深入探讨了如何寻找整数数组中具有最大和的连续子数组问题,通过动态规划方法,详细解释了算法实现过程,并附带示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

示例:

输入: [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

解题思路

动态规划

使用一个大小为len(nums)的一维动态数组,每个元素表示以num[i]结尾的最大和,因此对于一个元素nums[i],需要比较dp[i-1]+nums[i]和nums[i]

class Solution(object):
    def maxSubArray(self, nums):
        dp = [0] * len(nums)
        dp[0] = nums[0]
        res = dp[0]
        for i in range(1, len(nums)):
            dp[i] = max(dp[i - 1] + nums[i], nums[i])
            res = max(res, dp[i])
        return res

S = Solution()
print(S.maxSubArray([-2,1,-3,4,-1,2,1,-5,4]))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值