人工智能-目录

第一部分:人工智能基础(共15课时)

第1课:人工智能概述(一)

  • 人工智能的定义与发展历程
  • 人工智能的主要研究领域简介

第2课:人工智能概述(二)

  • 人工智能在社会各领域的应用案例分享
  • 课堂互动:教师分享对人工智能的初步认知和期望

第3课:机器学习基础(一)

  • 监督学习、无监督学习、强化学习的概念与区别
  • 常见机器学习算法简介(上)

第4课:机器学习基础(二)

  • 常见机器学习算法简介(下)
  • 机器学习在教育中的应用示例(上)

第5课:机器学习基础(三)

  • 机器学习在教育中的应用示例(下)
  • 实操练习:体验简单的机器学习工具(上)

第6课:机器学习基础(四)

  • 实操练习:体验简单的机器学习工具(下)

第7课:自然语言处理入门(一)

  • 语言模型的基本原理
  • 文本分类、情感分析等自然语言处理任务介绍(上)

第8课:自然语言处理入门(二)

  • 文本分类、情感分析等自然语言处理任务介绍(下)
  • 自然语言处理在教育中的应用(上)

第9课:自然语言处理入门(三)

  • 自然语言处理在教育中的应用(下)
  • 实操练习:体验简单的自然语言处理平台(上)

第10课:自然语言处理入门(四)

  • 实操练习:体验简单的自然语言处理平台(下)

第11课:计算机视觉基础(一)

  • 图像识别与分类技术
  • 人脸识别、物体检测等计算机视觉应用(上)

第12课:计算机视觉基础(二)

  • 人脸识别、物体检测等计算机视觉应用(下)
  • 计算机视觉在教育场景中的潜在用途

第13课:计算机视觉基础(三)

  • 实操练习:体验简单的计算机视觉工具(上)

第14课:计算机视觉基础(四)

  • 实操练习:体验简单的计算机视觉工具(下)

第15课:人工智能基础回顾与答疑

  • 回顾人工智能基础知识点
  • 教师提问与答疑环节

第二部分:AIGC技术详解(共20课时)

第16课:AIGC概述与原理(一)

  • AIGC的定义与特点
  • AIGC的工作原理(上)

第17课:AIGC概述与原理(二)

  • AIGC的工作原理(下)
  • AIGC技术的发展历程与现状
  • 课堂讨论:AIGC技术对教育可能产生的影响

第18课:AIGC在教育中的应用场景(一)

  • 教学内容生成(上)
  • 实例演示:利用AIGC工具快速生成一份教学课件(上)

第19课:AIGC在教育中的应用场景(二)

  • 教学内容生成(下)
  • 实例演示:利用AIGC工具快速生成一份教学课件(下)

第20课:AIGC在教育中的应用场景(三)

  • 学习资源推荐(上)
  • 案例分析:某在线教育平台如何利用AIGC进行个性化学习资源推荐(上)

第21课:AIGC在教育中的应用场景(四)

  • 学习资源推荐(下)
  • 案例分析:某在线教育平台如何利用AIGC进行个性化学习资源推荐(下)

第22课:AIGC在教育中的应用场景(五)

  • 作业批改与辅导(上)
  • 实操体验:教师使用AIGC作业批改工具,感受其便捷性和准确性(上)

第23课:AIGC在教育中的应用场景(六)

  • 作业批改与辅导(下)
  • 实操体验:教师使用AIGC作业批改工具,感受其便捷性和准确性(下)

第24课:AIGC在教育中的应用场景(七)

  • 课堂互动与答疑(上)
  • 利用AIGC生成课堂互动话题和活动方案(上)

第25课:AIGC在教育中的应用场景(八)

  • 课堂互动与答疑(下)
  • 利用AIGC生成课堂互动话题和活动方案(下)
  • 分组研讨:教师探讨如何在自己的课堂中运用AIGC进行互动教学

第26课:AIGC工具的使用与实践(一)

  • 常见AIGC工具介绍(上)
  • AIGC工具的基本操作与使用技巧(上)

第27课:AIGC工具的使用与实践(二)

  • 常见AIGC工具介绍(下)
  • AIGC工具的基本操作与使用技巧(下)

第28课:AIGC工具的使用与实践(三)

  • 如何根据教学需求选择合适的AIGC工具
  • 实战演练:教师分组完成一个教学任务,全程使用AIGC工具辅助(上)

第29课:AIGC工具的使用与实践(四)

  • 实战演练:教师分组完成一个教学任务,全程使用AIGC工具辅助(中)

第30课:AIGC工具的使用与实践(五)

  • 实战演练:教师分组完成一个教学任务,全程使用AIGC工具辅助(下)
  • 作品展示与点评:各小组展示成果,教师相互点评,总结AIGC工具在教学中的优势与局限

第31课:AIGC技术详解回顾与答疑(一)

  • 回顾AIGC概述与原理知识点
  • 教师提问与答疑环节(上)

第32课:AIGC技术详解回顾与答疑(二)

  • 回顾AIGC在教育中的应用场景知识点
  • 教师提问与答疑环节(下)

第33课:AIGC工具使用与实践回顾与答疑(一)

  • 回顾AIGC工具的使用与实践知识点
  • 教师提问与答疑环节(上)

第34课:AIGC工具使用与实践回顾与答疑(二)

  • 教师提问与答疑环节(下)

第三部分:人工智能与教育的融合(共10课时)

第35课:人工智能助力教学提质增效(一)

  • 个性化教学的实现(上)
  • 案例分享:某学校如何借助人工智能实现分层教学(上)

第36课:人工智能助力教学提质增效(二)

  • 个性化教学的实现(下)
  • 案例分享:某学校如何借助人工智能实现分层教学(下)

第37课:人工智能助力教学提质增效(三)

  • 教学管理优化(上)
  • 教学质量评估与反馈的自动化(上)

第38课:人工智能助力教学提质增效(四)

  • 教学管理优化(下)
  • 教学质量评估与反馈的自动化(下)
  • 实操练习:教师使用人工智能教学管理系统,体验教学管理的便捷性(上)

第39课:人工智能助力教学提质增效(五)

  • 实操练习:教师使用人工智能教学管理系统,体验教学管理的便捷性(下)
  • 教育资源的整合与共享(上)

第40课:人工智能助力教学提质增效(六)

  • 教育资源的整合与共享(下)
  • 小组讨论:教师探讨如何在本校或本地区推动教育资源共享

第41课:人工智能教育的伦理与挑战(一)

  • 人工智能在教育中的伦理问题(上)
  • 数据隐私与安全

第42课:人工智能教育的伦理与挑战(二)

  • 人工智能在教育中的伦理问题(下)
  • 算法偏见与公平性

第43课:人工智能教育的伦理与挑战(三)

  • 面对人工智能挑战的教师角色转变(上)
  • 教师如何提升自身数字素养,适应人工智能时代教育变革(上)

第44课:人工智能教育的伦理与挑战(四)

  • 面对人工智能挑战的教师角色转变(下)
  • 教师如何提升自身数字素养,适应人工智能时代教育变革(下)
  • 课堂总结:教师回顾所学内容,展望人工智能在自己教学工作中的应用前景,提出疑问和建议

第四部分:学科融合应用(共5课时)

第45课:AIGC与数学教学融合(一)

  • AIGC在数学教学中的应用概述
  • 自动生成数学题目和答案解析
  • 实例演示:利用AIGC生成数学练习题和详细解析

第46课:AIGC与数学教学融合(二)

1. 数学概念的可视化生成
  • 目标:帮助学生通过可视化工具更好地理解抽象的数学概念。
  • 内容
    • 利用AIGC工具生成几何图形、函数图像等可视化内容。
    • 介绍如何使用Python的matplotlibseaborn库生成数学图形。
    • 实例演示:生成二次函数的图像,并展示其顶点、对称轴等特征。
    • 课堂互动:学生使用AIGC工具生成自己选择的数学图形,并解释其特征。
2. 数学问题的动态解答
  • 目标:通过AIGC工具生成数学问题的逐步解答,帮助学生理解解题过程。
  • 内容
    • 介绍AIGC工具如何生成数学问题的详细解答步骤。
    • 实例演示:生成一道复杂的代数题的逐步解答过程。
    • 课堂练习:学生使用AIGC工具生成一道数学题的解答,并相互讨论解题方法。
3. 数学教学的个性化内容生成
  • 目标:根据学生的学习进度和理解能力,生成个性化的数学学习内容。
  • 内容
    • 介绍如何利用AIGC工具分析学生的学习数据,生成个性化的学习内容。
    • 实例演示:为不同水平的学生生成适合的数学练习题和讲解内容。
    • 课堂讨论:教师分享如何在实际教学中应用个性化内容生成,提高教学效果。

第47课:AIGC 与数学教学融合(三)

1. 数学教学中的智能辅导系统
  • 目标:利用AIGC工具构建智能辅导系统,提供实时的学习支持。
  • 内容
    • 介绍智能辅导系统的功能和工作原理。
    • 实例演示:展示一个智能辅导系统如何根据学生的学习情况提供个性化的辅导建议。
    • 课堂实践:教师分组设计一个简单的智能辅导系统原型,利用AIGC工具生成辅导内容。
2. 数学教学中的互动式学习活动
  • 目标:通过AIGC工具生成互动式学习活动,提高学生的参与度和学习效果。
  • 内容
    • 介绍如何利用AIGC工具生成互动式学习活动,如数学游戏、模拟实验等。
    • 实例演示:生成一个数学游戏,让学生在游戏过程中学习数学知识。
    • 课堂实践:教师分组设计一个数学互动式学习活动,利用AIGC工具生成活动内容。
3. 数学教学中的项目式学习
  • 目标:利用AIGC工具支持项目式学习,培养学生的综合能力和解决问题的能力。
  • 内容
    • 介绍项目式学习的概念和优势。
    • 实例演示:展示一个利用AIGC工具支持的数学项目式学习案例,如设计一个数学模型来解决实际问题。
    • 课堂讨论:教师分享如何在自己的课堂中应用项目式学习,提高学生的综合能力。

第48课:AIGC 与数学教学融合(四)

1. 数学教学中的数据分析与预测
  • 目标:利用AIGC工具进行数学教学中的数据分析和预测,优化教学策略。
  • 内容
    • 介绍如何利用AIGC工具分析学生的学习数据,进行学习效果的预测。
    • 实例演示:分析学生在数学考试中的表现,预测学生在下一阶段的学习表现。
    • 课堂实践:教师分组分析一组学生的学习数据,利用AIGC工具生成预测报告。
2. 数学教学中的智能评估系统
  • 目标:构建智能评估系统,提供全面、客观的学习评估。
  • 内容
    • 介绍智能评估系统的功能和工作原理。
    • 实例演示:展示一个智能评估系统如何对学生的数学作业和考试进行评估。
    • 课堂实践:教师分组设计一个智能评估系统原型,利用AIGC工具生成评估内容。
3. 数学教学中的创新应用
  • 目标:探索AIGC在数学教学中的创新应用,激发教师的创造力。
  • 内容
    • 介绍AIGC在数学教学中的最新创新应用,如虚拟现实(VR)和增强现实(AR)结合的数学教学。
    • 实例演示:展示一个利用VR和AR技术的数学教学案例。
    • 课堂讨论:教师分享自己对AIGC创新应用的想法和计划。

第49课:AIGC 与数学教学融合(五)

1. 数学教学中的跨学科应用
  • 目标:利用AIGC工具支持数学与其他学科的跨学科教学,培养学生的综合素养。
  • 内容
    • 介绍跨学科教学的概念和优势。
    • 实例演示:展示一个数学与科学、工程等学科结合的跨学科教学案例。
    • 课堂实践:教师分组设计一个跨学科教学项目,利用AIGC工具生成教学内容。
2. 数学教学中的研究性学习
  • 目标:通过AIGC工具支持研究性学习,培养学生的探究能力和创新思维。
  • 内容
    • 介绍研究性学习的概念和方法。
    • 实例演示:展示一个利用AIGC工具支持的数学研究性学习项目,如探究一个数学猜想。
    • 课堂实践:教师分组设计一个研究性学习项目,利用AIGC工具生成研究内容。
3. 数学教学中的在线协作学习
  • 目标:利用AIGC工具支持在线协作学习,提高学生的团队合作能力。
  • 内容
    • 介绍在线协作学习的概念和优势。
    • 实例演示:展示一个利用AIGC工具支持的在线协作学习平台,如在线数学讨论组。
    • 课堂实践:教师分组设计一个在线协作学习活动,利用AIGC工具生成活动内容。

第50课:AIGC 与数学教学融合总结与反馈

1. 课程总结
  • 目标:回顾AIGC与数学教学融合的课程内容,总结学习收获。
  • 内容
    • 回顾前几节课的主要内容和学习重点。
    • 教师分享在实际教学中应用AIGC工具的经验和成果。
    • 总结AIGC在数学教学中的优势和挑战。
2. 课程反馈
  • 目标:收集教师对课程内容和教学方法的反馈,为后续课程改进提供依据。
  • 内容
    • 收集教师对课程内容的反馈意见,包括课程的难度、实用性等。
    • 收集教师对教学方法的反馈意见,包括教学互动、实践环节等。
    • 根据反馈结果,讨论课程的优化和改进方向。
3. 未来展望
  • 目标:展望AIGC在数学教学中的未来发展趋势,鼓励教师持续学习和探索。
  • 内容
    • 讨论AIGC技术的未来发展趋势,如更强大的生成模型、更智能的交互系统等。
    • 鼓励教师持续关注AIGC技术的最新进展,不断探索新的教学应用。
    • 提供进一步学习资源和参考文献,支持教师的持续发展。
                《人工智能:深度学习入门到精通实战》课程主要就人工智能领域相关的深度学习基础、深度学习计算、卷积神经网络+经典网络、循环神经网络+RNN进阶、优化算法、计算机视觉和自然语言处理等,配套实战案例与项目全部基于真实数据集与实际任务展开,结合深度学习框架进行建模实战。                由浅入深,每一个理论搭配一个实验,引领学员浸泡式逐步掌握各项技能和实战项目,且侧重技能不同,学员的知识体系会更加全面课程大纲:第一章:深度学习基础-深度学习简介01.1-前置知识01.2-传统编程与数据编程01.3-深度学习起源01.4-深度学习崛起与发展01.5-深度学习成功案例01.6-深度学习特点 第二章:深度学习基础-Python基础02.1-PyTorch介绍与环境配置02.2-数据操作与创建Tensor02.3-算术操作、索引与改变形状02.4-线性代数、广播机制与内存开销02.5-Tensor和NumPy相互转换与Tensor on GPU02.6-实验01-创建和使用Tensor-102.7-实验01-创建和使用Tensor-202.8-梯度下降02.9-实验02-梯度下降-102.10-实验02-梯度下降-202.11-自动求梯度概念02.12-自动求梯度实例02.13-实验03-自动求梯度-102.14-实验03-自动求梯度-2 第三章:深度学习基础-线性回归03.1-线性回归讲解03.2-线性回归实例03.3-实验04-从零实现线性回归-103.4-实验04-从零实现线性回归-203.5-实验05-线性回归的简洁实现-103.6-实验05-线性回归的简洁实现-2 第四章:深度学习基础-softmax回归04.1-softmax回归04.2-实验06-FashionMNIST04.3-实验07-从零实现Softmax回归-104.4-实验07-从零实现Softmax回归-204.5-实验08-softmax回归的简洁实现 第五章:深度学习基础-多层感知机05.1-感知机05.2-多层感知机05.3-多层感知机与神经网络05.4-激活函数05.5-正向传播05.6-反向传播05.7-正向传播和反向传播05.8-批大小05.9-实验09-从零实现MLP05.10-实验10-MLP的简洁实现 第六章:深度学习基础-模型选择、欠拟合和过拟合06.1-训练误差和泛化误差06.2-模型选择06.3-欠拟合和过拟合06.4-权重衰减06.5-丢弃法06.6-实验11-多项式函数拟合实验06.7-实验12-高维线性回归实验-106.8-实验12-高维线性回归实验-206.9-实验13-Dropout 第七章:深度学习基础-数值稳定性和模型初始化07.1-数值稳定性和模型初始化-107.2-数值稳定性和模型初始化-207.3-实验14-房价预测案例-107.4-实验14-房价预测案例-207.5-实验14-房价预测案例-3 第八章:深度学习计算-模型构造08.1-模型构造-108.2-模型构造-208.3-模型构造-308.4-实验15-模型构造-108.5-实验15-模型构造-2 第九章:深度学习计算-模型参数的访问、初始化和共享09.1-模型参数的访问09.2-模型参数初始化和共享09.3-实验16-模型参数-109.4-实验16-模型参数-2 第十章:深度学习计算-自定义层与读取和储存10.1-不含模型参数的自定义层10.2-含模型参数的自定义层10.3-实验17-自定义层10.4-读取和储存10.5-GPU计算10.6-实验18-读取和储存  第十一章:卷积神经网络11.01-卷积神经网络11.02-卷积神经网络的组成层11.03-图像分类的局限性11.04-二维卷积层与卷积层11.05-卷积在图像中的直观作用11.06-实验19-二维卷积层11.07-填充与步幅11.08-卷积过程11.09-卷积层参数-111.10-卷积层参数-211.11-实验20-Pad和Stride11.12-多输入和输出通道11.13-实验21-多通道11.14-池化层11.15-实验22-池化层 第十二章:经典网络12.01-卷积神经网络12.02-实验23-LeNet模型12.03-深度卷积神经网络12.04-实验24-AlexNet模型12.05-使用重复元素的网络12.06-实验25-VGG模型12.07-网络中的网络12.08-实验26-NiN模型12.09-含并行连接的网络12.10-实验27-GoogLeNet模型12.11-批量归一化-112.12-批量归一化-212.13-实验28-批量归一化12.14-残差网络12.15-实验29-残差网络12.16-稠密连接网络12.17-实验30-稠密连接网络 第十三章:循环神经网络13.01-语言模型和计算13.02-n元语法13.03-RNN和RNNs13.04-标准RNN向前输出流程和语言模型应用13.05-vector-to-sequence结构13.06-实验31-语言模型数据集-113.07-实验31-语言模型数据集-213.08-实验32-从零实现循环神经网络-113.09-实验32-从零实现循环神经网络-213.10-实验32-从零实现循环神经网络-313.11-实验32-从零实现循环神经网络-413.12-实验33-简洁实现循环神经网络-113.13-实验33-简洁实现循环神经网络-2 第十四章:RNN进阶14.01-通过时间反向传播-114.02-通过时间反向传播-214.03-长短期记忆-114.04-长短期记忆-214.05-实验34-长短期记忆网络-114.06-实验34-长短期记忆网络-214.07-门控循环单元14.08-RNN扩展模型14.09-实验35-门控循环单元 第十五章:优化算法15.01-优化与深度学习15.02-局部最小值和鞍点15.03-提高深度学习的泛化能力15.04-实验36-小批量梯度下降-115.05-实验36-小批量梯度下降-215.06-动量法-115.07-动量法-215.08-实验37-动量法15.09-AdaGrad算法与特点15.10-实验38-AdaGrad算法15.11-RMSrop算法15.12-实验39-RMSProp算法15.13-AdaDelta算法15.14-实验40-AdaDelta算法15.15-Adam算法15.16-实验41-Adam算法15.17-不用二阶优化讲解与超参数 第十六章:计算机视觉16.01-图像增广与挑战16.02-翻转、裁剪、变化颜色与叠加16.03-实验42-图像增广-116.04-实验42-图像增广-216.05-微调16.06-迁移学习16.07-实验43-微调-116.08-实验43-微调-216.09-目标检测16.10-边界框16.11-实验44-边界框16.12-锚框与生成多个锚框16.13-交并比16.14-实验45-生成锚框-116.15-实验45-生成锚框-216.17-标注训练集的锚框-116.18-标注训练集的锚框-216.19-实验46-标注训练集的锚框-116.20-实验46-标注训练集的锚框-216.21-实验46-标注训练集的锚框-316.22-输出预测边界框16.23-实验47-输出预测边界框-116.24-实验47-输出预测边界框-216.25-多尺度目标检测16.26-实验48-多尺度目标检测16.27-目标检测算法分类16.28-SSD与模型设计16.29-预测层16.30-损失函数16.31-SSD预测16.32-实验49-目标检测数据集16.33-实验50-SSD目标检测-116.34-实验50-SSD目标检测-216.35-实验50-SSD目标检测-316.36-实验50-SSD目标检测-416.37-实验50-SSD目标检测-516.38-实验50-SSD目标检测-6 第十七章:自然语言处理17.01-词嵌入和词向量17.02-神经网络模型17.03-跳字模型17.04-训练跳字模型17.05-连续词袋模型17.06-负采样17.07-层序softmax17.08-子词嵌入17.09-Fasttext模型17.10-全局向量的词嵌入17.11-实验51-word2vec之数据预处理-117.12-实验51-word2vec之数据预处理-217.13-实验52-word2vec之负采样-117.14-实验52-word2vec之负采样-217.15-实验53-word2vec之模型构建-117.16-实验53-word2vec之模型构建-217.17-实验54-求近义词和类比词-117.18-实验54-求近义词和类比词-217.19-实验55-文本情感分类RNN-117.20-实验55-文本情感分类RNN-217.21-实验55-文本情感分类RNN-317.22-实验55-文本情感分类RNN-417.23-TextCNN17.24-TextCNN流程17.25-实验56-文本情感分类textCNN-117.26-实验56-文本情感分类textCNN-217.27-Seq2Seq的历史与网络架构17.28-Seq2Seq的应用与存在的问题17.29-Attention机制与Bucket机制17.30-实验57-机器翻译之模型构建-117.31-实验57-机器翻译之模型构建-217.32-实验57-机器翻译之模型构建-317.33-实验58-机器翻译之训练评估-117.34-实验58-机器翻译之训练评估-217.35-实验58-机器翻译之训练评估-3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蒋会全

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值